• 1 SOUTH 1.21

Accepting Doctoral Students


Research output per year

If you made any changes in Pure these will be visible here soon.

Personal profile

Research interests

Research activities and interests within the group focus on several different aspects of the synthesis of homogeneous and heterogeneous catalysts for sustainable chemical transformations and green chemistry.

Our work involves a major synthetic component, most of which is carried out using inert atmosphere techniques. Work utilises solution-state NMR (within the department), mass spectrometry, electron microscopy and X-ray crystallography to probe the structure of the homogeneous catalysts.

Production of biopolymers: In this area my group is developing new initiators for the production of polylactide (PLA), co-polymers and polymers from terpenes. PLA is a biodegradable and annually renewable polymer. We are pioneering new ligands and complexes for the production of isotactic PLA – this work has recently been published in Chemical Science 2015 and Chemical Communications 2014, 2016. These papers describe a new “self-correcting” method of the polymerisation of lactide and illustrate the subtle nature that the initiator has on selectivity and rate of polymerisation.

Catalytic upgrading if renewables:

In this area we are interested in the conversion of ethanol into 1,3-butadiene (a monomer for the production of synthetic rubber). This is driven by the in-stability in the supply and the cost fluctuation of the monomer. There has been a lot of work in this area in the 1920’s, but with the bountiful supply of crude oil the “bio” route fell out of favour. This work has attracted industrial interest, (e.g. a patent has been filed WO2014180778A1) where we have developed a catalyst that is capable of producing butadiene with a selectivity in excess of 70%. There are still significant challenges posed by this research. For example, the selectivity towards ethylene and diethyl ether are relatively high. We are working on new catalysts (understanding how the acid/base properties affect this) to minimise these unwanted side reactions.

Also we are also working on projects involving the catalytic depolymerisation of lignin. This is important in the 21st Century as lignin represents a major un-tapped resource.


  • biopolymers
  • catalysis
  • sustainable chemistry

Fingerprint Dive into the research topics where Matthew Jones is active. These topic labels come from the works of this person. Together they form a unique fingerprint.

  • 9 Similar Profiles

Network Recent external collaboration on country level. Dive into details by clicking on the dots.


Strand 3 PhD Mobility 2017-2018

Patterson, E. E., Jones, M., Shivaprasad, P., van der Schaaf, J. & Noël, T.


Project: Research-related funding

  • Global Collaboration Scheme - Catalysis and Reaction Engineering

    Mattia, D., Jones, M., McManus, M., Aresta, M. & Yan, N.


    Project: Research-related funding

    Research Output

    Chemical Degradation of end-of-life Poly(lactic acid) into Methyl Lactate by a Zn(II) Complex

    Román-Ramírez, L., McKeown, P., Shah, C., Abraham, J., Jones, M. & Wood, J., 17 Jun 2020, In : Industrial & Engineering Chemistry Research. 59, 24, p. 11149-11156 8 p.

    Research output: Contribution to journalArticle

    Open Access
    2 Citations (Scopus)

    Ethyl Lactate Production from the Catalytic Depolymerisation of Post-consumer Poly(lactic acid)

    Román-Ramírez, L. A., Powders, M., McKeown, P., Jones, M. D. & Wood, J., 17 Jul 2020, In : Journal of Polymers and the Environment.

    Research output: Contribution to journalArticle

    Open Access

    Kinetics of alkyl lactate formation from the alcoholysis of poly(lactic acid)

    Lamberti, F. M., Román-Ramírez, L. A., Mckeown, P., Jones, M. D. & Wood, J., 24 Jun 2020, In : Processes. 8, 6, 738.

    Research output: Contribution to journalArticle

    Open Access

    Kinetics of Methyl Lactate Formation from the Transesterification of Polylactic Acid Catalyzed by Zn(II) Complexes

    Román-Ramírez, L., McKeown, P., Jones, M. & Wood, J., 17 Mar 2020, In : ACS OMEGA. 5, 10, p. 5556-5564

    Research output: Contribution to journalArticle

    Open Access
    4 Citations (Scopus)


    Metal influence on the iso- and hetero-selectivity of complexes of bipyrrolidine derived Salan ligands for the polymerisation of rac-lactide

    Jones, M. (Creator), Buchard, A. (Creator), McKeown, P. (Creator), Brady, L. (Creator), Lowe, J. (Creator), Mahon, M. (Creator), Thomas, L. (Creator) & Woodman, T. (Creator), Royal Society of Chemistry, 2015


    Dataset for: N-doped Fe@CNT for combined RWGS/FT CO2 hydrogenation

    Williamson, D. (Creator), Herdes Moreno, C. (Creator), Torrente Murciano, L. (Creator), Jones, M. (Creator) & Mattia, D. (Creator), University of Bath, 11 Mar 2019


    Aluminium Salalens vs. Salans: “Initiator Design” for the Isoselective Polymerisation of rac-Lactide

    Jones, M. (Creator), Davidson, M. (Creator), Mckeown, P. (Creator) & Kociok-Kohn, G. (Creator), University of Bath, 7 Jul 2016