If you made any changes in Pure these will be visible here soon.

Personal profile

Research interests

Research activities and interests within the group focus on several different aspects of the synthesis of homogeneous and heterogeneous catalysts for sustainable chemical transformations and green chemistry.

Our work involves a major synthetic component, most of which is carried out using inert atmosphere techniques. Work utilises solution-state NMR (within the department), mass spectrometry, electron microscopy and X-ray crystallography to probe the structure of the homogeneous catalysts.

Production of biopolymers: In this area my group is developing new initiators for the production of polylactide (PLA), co-polymers and polymers from terpenes. PLA is a biodegradable and annually renewable polymer. We are pioneering new ligands and complexes for the production of isotactic PLA – this work has recently been published in Chemical Science 2015 and Chemical Communications 2014, 2016. These papers describe a new “self-correcting” method of the polymerisation of lactide and illustrate the subtle nature that the initiator has on selectivity and rate of polymerisation.

Catalytic upgrading if renewables:

In this area we are interested in the conversion of ethanol into 1,3-butadiene (a monomer for the production of synthetic rubber). This is driven by the in-stability in the supply and the cost fluctuation of the monomer. There has been a lot of work in this area in the 1920’s, but with the bountiful supply of crude oil the “bio” route fell out of favour. This work has attracted industrial interest, (e.g. a patent has been filed WO2014180778A1) where we have developed a catalyst that is capable of producing butadiene with a selectivity in excess of 70%. There are still significant challenges posed by this research. For example, the selectivity towards ethylene and diethyl ether are relatively high. We are working on new catalysts (understanding how the acid/base properties affect this) to minimise these unwanted side reactions.

Also we are also working on projects involving the catalytic depolymerisation of lignin. This is important in the 21st Century as lignin represents a major un-tapped resource.


  • biopolymers
  • catalysis
  • sustainable chemistry

Fingerprint Dive into the research topics where Matthew Jones is active. These topic labels come from the works of this person. Together they form a unique fingerprint.

  • 9 Similar Profiles
Ring opening polymerization Engineering & Materials Science
Ligands Engineering & Materials Science
Catalysts Engineering & Materials Science
polymerization Physics & Astronomy
ligands Physics & Astronomy
initiators Physics & Astronomy
Polymerization Engineering & Materials Science
rings Physics & Astronomy

Network Recent external collaboration on country level. Dive into details by clicking on the dots.

Projects 2007 2020

Research Output 2001 2019

6 Citations (Scopus)

A Circular Economy Approach to Plastic Waste

Payne, J., McKeown, P. & Jones, M., 1 Jul 2019, In : Polymer Degradation and Stability. 165, p. 170-181 12 p.

Research output: Contribution to journalArticle

Aluminium-Catalysed Isocyanate Trimerization, Enhanced by Exploiting a Dynamic Coordination Sphere

Bahili, M., Stokes, E., Amesbury, R., Ould, D., Christo, B., Horne, R., Kariuki, B., Stewart, J., Taylor, R., Williams, A., Jones, M., Harris, K. & Ward, B., 7 Jul 2019, In : Chemical communications (Cambridge, England). 55, 53, p. 7679-7682 4 p.

Research output: Contribution to journalArticle

Open Access
1 Citation (Scopus)

Copolymerization of Cyclic Phosphonate and Lactide: Synthetic Strategies toward Control of Amphiphilic Microstructure

Beament, J., Wolf, T., Markwart, J. C., Wurm, F. R., Jones, M. D. & Buchard, A., 12 Feb 2019, In : Macromolecules. 52, 3, p. 1220–1226 7 p.

Research output: Contribution to journalArticle

Open Access
3 Citations (Scopus)
43 Downloads (Pure)

Highly selective, iron-driven CO2 methanation

Williamson, D., Jones, M. & Mattia, D., 1 Feb 2019, In : Energy Technology. 7, 2, p. 294-306 13 p.

Research output: Contribution to journalArticle

Open Access


Application of the Spinning Mesh Disc Reactor for Process Intensification

Author: Shivaprasad, P., 19 Jun 2019

Supervisor: Jones, M. (Supervisor) & Emanuelsson, E. A. C. (Supervisor)

Student thesis: Doctoral ThesisPhD

Catalysts for stereoselective transformations

Author: Cooper, C., 1 Jan 2012

Supervisor: Jones, M. (Supervisor)

Student thesis: Doctoral ThesisPhD


Catalysts for Sustainable Chemical Technologies

Author: Di Iulio, C., 31 Dec 2012

Supervisor: Jones, M. (Supervisor)

Student thesis: Doctoral ThesisPhD


Catalysts for the production of sustainable biopolymers

Author: Whitelaw, E., 11 Nov 2011

Supervisor: Jones, M. (Supervisor)

Student thesis: Doctoral ThesisPhD


Conversion Of Carbon Dioxide To Hydrocarbons Using Iron Nanoparticle-Carbon Nanotube Catalysts

Author: Minett, D., 13 Jun 2014

Supervisor: Mattia, D. (Supervisor), Jones, M. (Supervisor), Johnson, A. (Supervisor), Tooze, B. (External person) (Supervisor) & Smith, D. (External person) (Supervisor)

Student thesis: Doctoral ThesisPhD