Fused Filament Fabrication (FFF) is a layer manufacturing process which can manufacture highly complex components from CAD files using a polymer extruder. RepRap is an open-source project to produce a rapid prototyping machine which can manufacture its own parts using the FFF process. This thesis focuses on the mechanical design of the ‘RepRap printer’ and documents how it was conceived, developed, tested, and finally used to make a set of its own parts.
Self-manufacture was demonstrated by assembling this set of parts into a working copy of the original machine. The child machine went on to demonstrate replication without degeneracy by successfully manufacturing one of its own parts.
A part count analysis of the child machine, not including the fasteners it needed in its early development phase, identified a self-manufacturing ratio of 48%. This proportion is relatively low because the design adopts modularity and redundancy principles to encourage development. Should the machine’s design be adapted to fully demonstrate self-manufacture, this ratio could rise to 67% in the near future. To increase the ratio further, the machine needs three new tool heads to print resin, conductive alloy, and flexible polymer. These developments are achievable in the mid-future and could increase the self manufactured parts ratio to 94%. As this machine is the first version of the RepRap printer, these results are encouraging.
Parts which the RepRap printer is unlikely to make until the far-future include some of the electronic components, motors, conductive cable, solenoids and a heating element. However, a 94% self-manufacturing ratio will qualify it as an assisted self-replicating machine. As with natural self-reproducing organisms, the printer will benefit from geometric growth and evolution. The author discusses how, by trading power, computing, feedstock and assembly for manufacturing capability with human beings, the RepRap printer may become a household item, offering a radical alternative to the way our society manufactures and consumes.
Date of Award | 1 Jan 2009 |
---|
Original language | English |
---|
Awarding Institution | |
---|
Supervisor | Adrian Bowyer (Supervisor) |
---|
- Rapid prototyping
- self reproduction
- reprap
Towards a Self-Manufacturing Rapid Prototyping Machine
Sells, E. (Author). 1 Jan 2009
Student thesis: Doctoral Thesis › PhD