The analysis and design of brushless D.C motors

  • Maamar Benarous

Student thesis: Doctoral ThesisPhD

Abstract

In modem computer systems electrical drives are used to rotate hard discs. These motors require special torque-speed characteristics. The speed of the hard disc must be constant in order for the unit to function correctly. One type of drive, which is used for hard discs is the brushless-DC-motor. This machine has permanent magnet excitation and a polyphase armature winding. It therefore takes the form of a synchronous machine, and in order to be brushless the armature winding is stationary and the excitation rotates. To run at adjustable speed a variable frequency supply is required. In the brushless D.C form the inverter output is phase locked to the rotor position, it is therefore electro-magnetically similar to the D.C machine where fixed brushes determine the frequency and phase of the current in the armature winding. In order to perform the phase lock action signals measuring the rotor position are needed. In one form of machine Hall effect probes detect the position of the rotor poles, in a second given that the rotor is in motion the induced back emf is used. Experimentally it is convenient to replace these magnet systems with a phototransistor and rotating shutter system and this was the approach used in this thesis. The objective of this research is to investigate different aspects of this motor. The generation, measurement, and placement of signals is described and illustrated, and the design and construction of an inverter supply circuit is described.

Both 2D and 3D finite element analysis is used in order to find the machine parameters as well as cogging torque analysis, using the concept of permanent magnet magnetisation characteristics. It is shown that the cogging can be reduced for certain types of magnetisation. The finite element analysis is taken further by connecting the drive circuit needed to run the machine into the finite element mesh, the machine parameters are defined using this method. The close agreement between the simulation and practical results indicates that the complete modelling can be achieved using this method.

The mathematical models of both Star, and Delta connected brushless DC machines are presented, and a complete model of the machine inverter system is built for both cases. The work is accomplished by the use of the Matlab analogue simulation toolbox, Simulink, and the simulation program calculates the electrical performances of both machines under steady state. The results obtained are compared to the experimental data, and a comparison between both machines is presented.

A brushless DC motor using an insulated iron core material is presented, and analysed using 2D finite element analysis. The newly constructed machine is also tested and compared to the conventional version.

Date of Award10 Feb 1999
Original languageEnglish
Awarding Institution
  • University of Bath

Cite this

'