Development of a fault location method based on fault induced transients in distribution networks with wind farm connections

  • Kapildev Lout

Student thesis: Doctoral ThesisPhD

Abstract

Electrical transmission and distribution networks are prone to short circuit faults since they span over long distances to deliver the electrical power from generating units to where the energy is required. These faults are usually caused by vegetation growing underneath bare overhead conductors, large birds short circuiting the phases, mechanical failure of pin-type insulators or even insulation failure of cables due to wear and tear, resulting in creepage current. Short circuit faults are highly undesirable for distribution network companies since they cause interruption of supply, thus affecting the reliability of their network, leading to a loss of revenue for the companies. Therefore, accurate offline fault location is required to quickly tackle the repair of permanent faults on the system so as to improve system reliability. Moreover, it also provides a tool to identify weak spots on the system following transient fault events such that these future potential sources of system failure can be checked during preventive maintenance. With these aims in mind, a novel fault location technique has been developed to accurately determine the location of short circuit faults in a distribution network consisting of feeders and spurs, using only the phase currents measured at the outgoing end of the feeder in the substation. These phase currents are analysed using the Discrete Wavelet Transform to identify distinct features for each type of fault. To achieve better accuracy and success, the scheme firstly uses these distinct features to train an Artificial Neural Network based algorithm to identify the type of fault on the system. Another Artificial Neural Network based algorithm dedicated to this type of fault then identifies the location of the fault on the feeder or spur. Finally, a series of Artificial Neural Network based algorithms estimate the distance to the point of fault along the feeder or spur. The impact of wind farm connections consisting of doubly-fed induction generators and permanent magnet synchronous generators on the accuracy of the developed algorithms has also been investigated using detailed models of these wind turbine generator types in Simulink. The results obtained showed that the developed scheme allows the accurate location of the short circuit faults in an active distribution network. Further sensitivity tests such as the change in fault inception angle, fault impedance, line length, wind farm capacity, network configuration and white noise confirm the robustness of the novel fault location technique in active distribution networks.
Date of Award30 Jun 2015
LanguageEnglish
Awarding Institution
  • University of Bath
SupervisorRaj Aggarwal (Supervisor)

Keywords

  • fault location, artificial neural networks

Cite this

Development of a fault location method based on fault induced transients in distribution networks with wind farm connections
Lout, K. (Author). 30 Jun 2015

Student thesis: Doctoral ThesisPhD