The 21st century demand for innovation is leading towards a revolution in the way products are perceived. This will have a major impact on manufacturing technologies as current product innovation is constrained by the available manufacturing processes, which function independently. One of the most significant developments is the emergence of hybrid manufacturing technologies integrating various individual manufacturing processes. Hybrid processes utilise the advantages of the independent processes whilst minimising their weaknesses as well as extending application areas.Despite the fact that the drawbacks of the individual processes have been significantly reduced, the application of state of the art hybrid technology has always been constrained by the capabilities of their constituent processes either from technical limitations or production costs. In particular, it is virtually impossible to machine complex parts due to limited cutting tool accessibility. By contrast, additive manufacturing (AM) techniques completely solve the tool accessibility issue, but this increased flexibility and automation is achieved by compromising on part accuracy and surface quality. Furthermore, the shape and size of raw materials have to be specific for each hybrid process. More importantly, process planning methods capable of effectively utilising manufacturing resources for hybrid processes are highly limited.In this research, a hybrid process, entitled iAtractive, combining additive, subtractive and inspection processes is proposed. An experimental methodology has been designed and implemented, by which a generative reactionary process planning algorithm (GRP2A) and feature-based decision-making logic (FDL) is developed. GRP2A enables a complex part to be accurately manufactured as one complete unit in the shortest production time possible. FDL provides a number of manufacturing strategies, allowing existing parts to be reused and transformed into final parts with additional features and functionalities. A series of case studies have been manufactured from zero and existing parts, demonstrating the efficacy of the iAtractive process and the developed GRP2A and FDL, which are based on a manual process.The major contribution to knowledge is the new vision for a hybrid process, which is not constrained by the capability of the individual processes and raw material in terms of shape and size. It has been demonstrated that the hybrid process together with GRP2A and FDL provides an effective solution to flexibly and accurately manufacture complex part geometries as well as remanufacture existing parts.
Date of Award | 29 Oct 2013 |
---|
Original language | English |
---|
Awarding Institution | |
---|
Supervisor | Stephen Newman (Supervisor), Vimal Dhokia (Supervisor) & Aydin Nassehi (Supervisor) |
---|
- hybrid manufacture
- process planning
- additive manufacturing
- CNC machining
- inspection
A Process Planning Approach for Hybrid Manufacture of Prismatic Polymer Components
Zhu, Z. (Author). 29 Oct 2013
Student thesis: Doctoral Thesis › PhD