WS2 Nanotubes, 2D Nanomeshes, and 2D In-Plane Films Through One Single Chemical Vapor Deposition route

Research output: Contribution to journalArticle

1 Citation (Scopus)
19 Downloads (Pure)

Abstract

We demonstrate a versatile, catalyst free chemical vapor deposition process on insulating substrates capable of producing in one single stream one-dimensional (1D) WO3- x suboxides leading to a wide range of substrate-supported 2H-WS2 polymorphs: a tunable class of out-of-plane (of the substrate) nanophases, with 1D nanotubes and a pure WS2, two-dimensional (2D) nanomesh (defined as a network of webbed, micron-size, few-layer 2D sheets) at its extremes; and in-plane (parallel to the substrate) mono- and few-layer 2D domains. This entails a two-stage approach in which the 2WO3 + 7S → 2WS2 + 3SO2 reaction is intentionally decoupled. First, various morphologies of nanowires or nanorods of high stoichiometry, WO2.92/WO2.9 suboxides (belonging to the class of Magnéli phases) were formed, followed by their sulfurization to undergo reduction to the aforementioned WS2 polymorphs. The continuous transition of WS2 from nanotubes to the out-of-plane 2D nanomesh, via intermediary, mixed 1D-2D phases, delivers tunable functional properties, for example, linear and nonlinear optical properties, such as reflectivity (linked to optical excitations in the material), and second harmonic generation (SHG) and onset of saturable absorption. The SHG effect is very strong across the entire tunable class of WS2 nanomaterials, weakest in nanotubes, and strongest in the 2D nanomesh. Furthermore, a mechanism via suboxide (WO3- x) intermediate as a possible path to 2D domain growth is demonstrated. 2D, in-plane WS2 domains grow via "self-seeding and feeding" where short WO2.92/WO2.9 nanorods provide both the nucleation sites and the precursor feedstock. Understanding the reaction path (here, in the W-O-S space) is an emerging approach toward controlling the nucleation, growth, and morphology of 2D domains and films of transition-metal dichalcogenides.

Original languageEnglish
Pages (from-to)3896–3909
Number of pages14
JournalACS Nano
Volume13
Issue number4
Early online date26 Mar 2019
DOIs
Publication statusPublished - 23 Apr 2019

Keywords

  • WS2 and WO3−x suboxides
  • chemical vapor deposition growth
  • linear and nonlinear optical properties
  • nanotubes
  • second harmonic generation
  • transition-metal dichalcogenides
  • two-dimensional layered materials

ASJC Scopus subject areas

  • Materials Science(all)
  • Engineering(all)
  • Physics and Astronomy(all)

Cite this

@article{7ae54625a0e84ef497c553db743995ba,
title = "WS2 Nanotubes, 2D Nanomeshes, and 2D In-Plane Films Through One Single Chemical Vapor Deposition route",
abstract = "We demonstrate a versatile, catalyst free chemical vapor deposition process on insulating substrates capable of producing in one single stream one-dimensional (1D) WO3- x suboxides leading to a wide range of substrate-supported 2H-WS2 polymorphs: a tunable class of out-of-plane (of the substrate) nanophases, with 1D nanotubes and a pure WS2, two-dimensional (2D) nanomesh (defined as a network of webbed, micron-size, few-layer 2D sheets) at its extremes; and in-plane (parallel to the substrate) mono- and few-layer 2D domains. This entails a two-stage approach in which the 2WO3 + 7S → 2WS2 + 3SO2 reaction is intentionally decoupled. First, various morphologies of nanowires or nanorods of high stoichiometry, WO2.92/WO2.9 suboxides (belonging to the class of Magn{\'e}li phases) were formed, followed by their sulfurization to undergo reduction to the aforementioned WS2 polymorphs. The continuous transition of WS2 from nanotubes to the out-of-plane 2D nanomesh, via intermediary, mixed 1D-2D phases, delivers tunable functional properties, for example, linear and nonlinear optical properties, such as reflectivity (linked to optical excitations in the material), and second harmonic generation (SHG) and onset of saturable absorption. The SHG effect is very strong across the entire tunable class of WS2 nanomaterials, weakest in nanotubes, and strongest in the 2D nanomesh. Furthermore, a mechanism via suboxide (WO3- x) intermediate as a possible path to 2D domain growth is demonstrated. 2D, in-plane WS2 domains grow via {"}self-seeding and feeding{"} where short WO2.92/WO2.9 nanorods provide both the nucleation sites and the precursor feedstock. Understanding the reaction path (here, in the W-O-S space) is an emerging approach toward controlling the nucleation, growth, and morphology of 2D domains and films of transition-metal dichalcogenides.",
keywords = "WS2 and WO3−x suboxides, chemical vapor deposition growth, linear and nonlinear optical properties, nanotubes, second harmonic generation, transition-metal dichalcogenides, two-dimensional layered materials",
author = "Zichen Liu and Alexander Murphy and Christian Kuppe and David Hooper and Ventsislav Valev and Adelina Ilie",
year = "2019",
month = "4",
day = "23",
doi = "10.1021/acsnano.8b06515",
language = "English",
volume = "13",
pages = "3896–3909",
journal = "ACS Nano",
issn = "1936-0851",
publisher = "American Chemical Society",
number = "4",

}

TY - JOUR

T1 - WS2 Nanotubes, 2D Nanomeshes, and 2D In-Plane Films Through One Single Chemical Vapor Deposition route

AU - Liu, Zichen

AU - Murphy, Alexander

AU - Kuppe, Christian

AU - Hooper, David

AU - Valev, Ventsislav

AU - Ilie, Adelina

PY - 2019/4/23

Y1 - 2019/4/23

N2 - We demonstrate a versatile, catalyst free chemical vapor deposition process on insulating substrates capable of producing in one single stream one-dimensional (1D) WO3- x suboxides leading to a wide range of substrate-supported 2H-WS2 polymorphs: a tunable class of out-of-plane (of the substrate) nanophases, with 1D nanotubes and a pure WS2, two-dimensional (2D) nanomesh (defined as a network of webbed, micron-size, few-layer 2D sheets) at its extremes; and in-plane (parallel to the substrate) mono- and few-layer 2D domains. This entails a two-stage approach in which the 2WO3 + 7S → 2WS2 + 3SO2 reaction is intentionally decoupled. First, various morphologies of nanowires or nanorods of high stoichiometry, WO2.92/WO2.9 suboxides (belonging to the class of Magnéli phases) were formed, followed by their sulfurization to undergo reduction to the aforementioned WS2 polymorphs. The continuous transition of WS2 from nanotubes to the out-of-plane 2D nanomesh, via intermediary, mixed 1D-2D phases, delivers tunable functional properties, for example, linear and nonlinear optical properties, such as reflectivity (linked to optical excitations in the material), and second harmonic generation (SHG) and onset of saturable absorption. The SHG effect is very strong across the entire tunable class of WS2 nanomaterials, weakest in nanotubes, and strongest in the 2D nanomesh. Furthermore, a mechanism via suboxide (WO3- x) intermediate as a possible path to 2D domain growth is demonstrated. 2D, in-plane WS2 domains grow via "self-seeding and feeding" where short WO2.92/WO2.9 nanorods provide both the nucleation sites and the precursor feedstock. Understanding the reaction path (here, in the W-O-S space) is an emerging approach toward controlling the nucleation, growth, and morphology of 2D domains and films of transition-metal dichalcogenides.

AB - We demonstrate a versatile, catalyst free chemical vapor deposition process on insulating substrates capable of producing in one single stream one-dimensional (1D) WO3- x suboxides leading to a wide range of substrate-supported 2H-WS2 polymorphs: a tunable class of out-of-plane (of the substrate) nanophases, with 1D nanotubes and a pure WS2, two-dimensional (2D) nanomesh (defined as a network of webbed, micron-size, few-layer 2D sheets) at its extremes; and in-plane (parallel to the substrate) mono- and few-layer 2D domains. This entails a two-stage approach in which the 2WO3 + 7S → 2WS2 + 3SO2 reaction is intentionally decoupled. First, various morphologies of nanowires or nanorods of high stoichiometry, WO2.92/WO2.9 suboxides (belonging to the class of Magnéli phases) were formed, followed by their sulfurization to undergo reduction to the aforementioned WS2 polymorphs. The continuous transition of WS2 from nanotubes to the out-of-plane 2D nanomesh, via intermediary, mixed 1D-2D phases, delivers tunable functional properties, for example, linear and nonlinear optical properties, such as reflectivity (linked to optical excitations in the material), and second harmonic generation (SHG) and onset of saturable absorption. The SHG effect is very strong across the entire tunable class of WS2 nanomaterials, weakest in nanotubes, and strongest in the 2D nanomesh. Furthermore, a mechanism via suboxide (WO3- x) intermediate as a possible path to 2D domain growth is demonstrated. 2D, in-plane WS2 domains grow via "self-seeding and feeding" where short WO2.92/WO2.9 nanorods provide both the nucleation sites and the precursor feedstock. Understanding the reaction path (here, in the W-O-S space) is an emerging approach toward controlling the nucleation, growth, and morphology of 2D domains and films of transition-metal dichalcogenides.

KW - WS2 and WO3−x suboxides

KW - chemical vapor deposition growth

KW - linear and nonlinear optical properties

KW - nanotubes

KW - second harmonic generation

KW - transition-metal dichalcogenides

KW - two-dimensional layered materials

UR - http://www.scopus.com/inward/record.url?scp=85065344232&partnerID=8YFLogxK

U2 - 10.1021/acsnano.8b06515

DO - 10.1021/acsnano.8b06515

M3 - Article

VL - 13

SP - 3896

EP - 3909

JO - ACS Nano

JF - ACS Nano

SN - 1936-0851

IS - 4

ER -