Abstract
The windage torque on rotational walls has negative effect on the performance of the low pressure turbine. In this paper, three novel flow control concepts (FCCs) were proposed to reduce the windage torque within a turbine stator well, with upstream and downstream cavities connected by an interstage labyrinth seal. The swirl and flow pattern inside a reference turbine cavity was first investigated and the potential locations for the FCCs were identified using numerical simulations. FCC1 was a circumferential row of leaned deflectors downstream of the labyrinth seal. FCC2 was a set of deflector vanes and platform to optimize the ingress swirl at high radius in the upstream cavity. FCC3 combined the two flow concepts and the superposition resulted in a stator well windage torque reduction of 70% when compared to the baseline design. The FCCs also showed performance benefits at off-design conditions and over a range of secondary flow rates to the cavity. In Part 2 [1], the numerical analysis and performance of the FCCs are validated in an experimental rig, using additively-manufactured components.
Original language | English |
---|---|
Pages (from-to) | 1-16 |
Journal | Journal of Turbomachinery |
Early online date | 7 Dec 2023 |
DOIs | |
Publication status | Published - 7 Dec 2023 |