Why study multifractal spectra?

Peter Morters

Research output: Chapter in Book/Report/Conference proceedingChapter

Abstract

We show by three simple examples how multifractal spectra can enrich our understanding of stochastic processes. The first example concerns the problem of describing the speed of fragmentation in a stick-breaking process, the second concerns the nature of a phase transition in a simple model of statistical mechanics, and the third example discusses the speed of emergence in Kingman’s coalescent.
LanguageEnglish
Title of host publicationTrends in Stochastic Analysis: A Festschrift in Honour of Heinrich v. Weizsäcker.
EditorsJ Blath, Peter Morters, M Scheutzow
PublisherCambridge University Press
Pages99-120
Number of pages22
Volume353
StatusPublished - 2009

Publication series

NameThe London Mathematical Society Lecture Notes Series 353
PublisherCambridge University Press

Fingerprint

stochastic processes
statistical mechanics
fragmentation

Cite this

Morters, P. (2009). Why study multifractal spectra? In J. Blath, P. Morters, & M. Scheutzow (Eds.), Trends in Stochastic Analysis: A Festschrift in Honour of Heinrich v. Weizsäcker. (Vol. 353, pp. 99-120). (The London Mathematical Society Lecture Notes Series 353). Cambridge University Press.

Why study multifractal spectra? / Morters, Peter.

Trends in Stochastic Analysis: A Festschrift in Honour of Heinrich v. Weizsäcker.. ed. / J Blath; Peter Morters; M Scheutzow. Vol. 353 Cambridge University Press, 2009. p. 99-120 (The London Mathematical Society Lecture Notes Series 353).

Research output: Chapter in Book/Report/Conference proceedingChapter

Morters, P 2009, Why study multifractal spectra? in J Blath, P Morters & M Scheutzow (eds), Trends in Stochastic Analysis: A Festschrift in Honour of Heinrich v. Weizsäcker.. vol. 353, The London Mathematical Society Lecture Notes Series 353, Cambridge University Press, pp. 99-120.
Morters P. Why study multifractal spectra? In Blath J, Morters P, Scheutzow M, editors, Trends in Stochastic Analysis: A Festschrift in Honour of Heinrich v. Weizsäcker.. Vol. 353. Cambridge University Press. 2009. p. 99-120. (The London Mathematical Society Lecture Notes Series 353).
Morters, Peter. / Why study multifractal spectra?. Trends in Stochastic Analysis: A Festschrift in Honour of Heinrich v. Weizsäcker.. editor / J Blath ; Peter Morters ; M Scheutzow. Vol. 353 Cambridge University Press, 2009. pp. 99-120 (The London Mathematical Society Lecture Notes Series 353).
@inbook{8db294882a4446c8886122cb7db15f8c,
title = "Why study multifractal spectra?",
abstract = "We show by three simple examples how multifractal spectra can enrich our understanding of stochastic processes. The first example concerns the problem of describing the speed of fragmentation in a stick-breaking process, the second concerns the nature of a phase transition in a simple model of statistical mechanics, and the third example discusses the speed of emergence in Kingman’s coalescent.",
author = "Peter Morters",
year = "2009",
language = "English",
volume = "353",
series = "The London Mathematical Society Lecture Notes Series 353",
publisher = "Cambridge University Press",
pages = "99--120",
editor = "J Blath and Peter Morters and M Scheutzow",
booktitle = "Trends in Stochastic Analysis: A Festschrift in Honour of Heinrich v. Weizs{\"a}cker.",
address = "UK United Kingdom",

}

TY - CHAP

T1 - Why study multifractal spectra?

AU - Morters,Peter

PY - 2009

Y1 - 2009

N2 - We show by three simple examples how multifractal spectra can enrich our understanding of stochastic processes. The first example concerns the problem of describing the speed of fragmentation in a stick-breaking process, the second concerns the nature of a phase transition in a simple model of statistical mechanics, and the third example discusses the speed of emergence in Kingman’s coalescent.

AB - We show by three simple examples how multifractal spectra can enrich our understanding of stochastic processes. The first example concerns the problem of describing the speed of fragmentation in a stick-breaking process, the second concerns the nature of a phase transition in a simple model of statistical mechanics, and the third example discusses the speed of emergence in Kingman’s coalescent.

M3 - Chapter

VL - 353

T3 - The London Mathematical Society Lecture Notes Series 353

SP - 99

EP - 120

BT - Trends in Stochastic Analysis: A Festschrift in Honour of Heinrich v. Weizsäcker.

PB - Cambridge University Press

ER -