Whole-systems modelling of alternatives for future domestic transport

Sheila Samsatli, Alfredo Ramos, Mark Matchett, Nigel P. Brandon, Nilay Shah, Nouri J. Samsatli

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)
168 Downloads (Pure)

Abstract

Two alternatives for future domestic transport, powered by renewable wind energy, were compared from a whole-systems point of view using a mixed-integer linear programming model that accounts for the pathways from the primary energy source to the end use. The model simultaneously determines the number, size and location of conversion and storage technologies and the structure of the transmission network, as well as their hourly operation over an entire year. The integrated wind-electricity-hydrogen network presented in Samsatli et al., 2015 (for hydrogen fuel cell vehicles only) was extended to include grid-scale batteries and electricity demands from electric cars, accounting for the aggregate charge state of the vehicles’ batteries. Two cases were considered: one where the electric vehicle batteries could only be charged overnight and one where some of the vehicles could also be charged in the afternoon (e.g. while the owners are at work). The former case results in a more expensive network due to the grid-scale battery storage required; both cases are cheaper than satisfying transport demand using fuel cell vehicles mainly because of the much higher cost of the hydrogen distribution network.
Original languageEnglish
Pages (from-to)457-462
JournalComputer Aided Chemical Engineering
Volume38
Early online date25 Jun 2016
DOIs
Publication statusPublished - 2016

Fingerprint Dive into the research topics of 'Whole-systems modelling of alternatives for future domestic transport'. Together they form a unique fingerprint.

Cite this