Abstract: Wearable assistive robotics is an emerging technology with the potential to assist humans with sensorimotor impairments to perform daily activities. This assistance enables individuals to be physically and socially active, perform activities independently, and recover quality of life. These benefits to society have motivated the study of several robotic approaches, developing systems ranging from rigid to soft robots with single and multimodal sensing, heuristics and machine learning methods, and from manual to autonomous control for assistance of the upper and lower limbs. This type of wearable robotic technology, being in direct contact and interaction with the body, needs to comply with a variety of requirements to make the system and assistance efficient, safe and usable on a daily basis by the individual. This paper presents a brief reviewof the progress achieved in recent years, the current challenges and trends for the design and deployment of wearable assistive robotics including the clinical and user need, material and sensing technology, machine learning methods for perception and control, adaptability and acceptability, datasets and
standards, and translation from lab to the real world.
Original languageEnglish
Publication statusAcceptance date - 6 Oct 2021

Cite this