Abstract
The analysis of vibrations from rotating machines gives information about their faults. From the signal processing perspective a significant problem is the detection of weak signals embedded in strong noise. Stochastic resonance (SR) is a mechanism where noise is not suppressed but exploited to trigger the synchronization of a non-linear system and in its one-dimensional form has been recently applied to vibration analysis. This paper focuses on the use of SR in a two-dimensional system of gradient type for detection of weak signals submerged in Gaussian noise. Comparing the traditional one-dimensional system and the two-dimensional used here, this paper shows that the latter can offer a more sensitive means of detection. An alternative metric is proposed to assess the output signal quality, requiring no a priori knowledge of the signal to be detected, and it is shown to offer similar results to the more conventional signal-to-noise ratio.
Original language | English |
---|---|
Title of host publication | Proceedings of the 23rd European Signal Processing Conference, 2015 |
Publisher | IEEE |
ISBN (Print) | 9780992862633 |
DOIs | |
Publication status | Published - 2015 |
Event | Signal Processing Conference (EUSIPCO), 2015 - Nice, Italy Duration: 31 Aug 2015 → 4 Sept 2015 |
Conference
Conference | Signal Processing Conference (EUSIPCO), 2015 |
---|---|
Country/Territory | Italy |
City | Nice |
Period | 31/08/15 → 4/09/15 |