TY - JOUR
T1 - Water-Stable etb-MOFs for Methane and Carbon Dioxide Storage
AU - Tsangarakis, Constantinos
AU - Azmy, Ali
AU - Tampaxis, Christos
AU - Zibouche, Nourdine
AU - Klontzas, Emmanuel
AU - Tylianakis, Emmanuel
AU - Froudakis, George E.
AU - Steriotis, Theodore
AU - Spanopoulos, Ioannis
AU - Trikalitis, Pantelis N.
N1 - Funding Information:
I.S. acknowledges financial support from ACS-PRF (65721-DNI5), acknowledgment is made to the donors of the American Chemical Society Petroleum Research Fund for support of this research. P.N.T. acknowledges the co-financial support by the European Regional Development Fund of the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH─CREATE─INNOVATE (project code: T1EDK-00770). This work used the Isambard 2 UK National Tier-2 HPC Service operated by GW4 and the UK Met Office, and funded by EPSRC (EP/T022078/1).
PY - 2023/4/10
Y1 - 2023/4/10
N2 - We utilized the etb platform of MOFs for the synthesis of two new water-stable compounds based on amide functionalized trigonal tritopic organic linkers H3BTBTB (L1), H3BTCTB (L2) and Al3+ metal ions, namely, Al(L1) and Al(L2). The mesoporous Al(L1) material exhibits an impressive methane (CH4) uptake at high pressures and ambient temperature. The corresponding values of 192 cm3 (STP) cm-3, 0.254 g g-1 at 100 bar, and 298 K are among the highest reported for mesoporous MOFs, while the gravimetric and volumetric working capacities (between 80 bar and 5 bar) can be well compared to the best MOFs for CH4 storage. Furthermore, at 298 K and 50 bar, Al(L1) adsorbs 50 wt % (304 cm3 (STP) cm-3) CO2, values among the best recorded for CO2 storage using porous materials. To gain insight into the mechanism accounting for the resultant enhanced CH4 storage capacity, theoretical calculations were performed, revealing the presence of strong CH4 adsorption sites near the amide groups. Our work demonstrates that amide functionalized mesoporous etb-MOFs can be valuable for the design of versatile coordination compounds with CH4 and CO2 storage capacities comparable to ultra-high surface area microporous MOFs.
AB - We utilized the etb platform of MOFs for the synthesis of two new water-stable compounds based on amide functionalized trigonal tritopic organic linkers H3BTBTB (L1), H3BTCTB (L2) and Al3+ metal ions, namely, Al(L1) and Al(L2). The mesoporous Al(L1) material exhibits an impressive methane (CH4) uptake at high pressures and ambient temperature. The corresponding values of 192 cm3 (STP) cm-3, 0.254 g g-1 at 100 bar, and 298 K are among the highest reported for mesoporous MOFs, while the gravimetric and volumetric working capacities (between 80 bar and 5 bar) can be well compared to the best MOFs for CH4 storage. Furthermore, at 298 K and 50 bar, Al(L1) adsorbs 50 wt % (304 cm3 (STP) cm-3) CO2, values among the best recorded for CO2 storage using porous materials. To gain insight into the mechanism accounting for the resultant enhanced CH4 storage capacity, theoretical calculations were performed, revealing the presence of strong CH4 adsorption sites near the amide groups. Our work demonstrates that amide functionalized mesoporous etb-MOFs can be valuable for the design of versatile coordination compounds with CH4 and CO2 storage capacities comparable to ultra-high surface area microporous MOFs.
UR - http://www.scopus.com/inward/record.url?scp=85151395341&partnerID=8YFLogxK
U2 - 10.1021/acs.inorgchem.2c04483
DO - 10.1021/acs.inorgchem.2c04483
M3 - Article
C2 - 36976265
AN - SCOPUS:85151395341
SN - 0020-1669
VL - 62
SP - 5496
EP - 5504
JO - Inorganic Chemistry
JF - Inorganic Chemistry
IS - 14
ER -