TY - JOUR
T1 - Wastewater Treatment Works
T2 - A Last Line of Defense for Preventing Antibiotic Resistance Entry Into the Environment
AU - Tucker, Keira
AU - Stone, Wendy
AU - Botes, Marelize
AU - Feil, Edward J.
AU - Wolfaardt, Gideon M.
N1 - Funding Information:
KT was supported in part by the National Research Foundation of South Africa (Grant numbers: 118159 and 130527) and the Water Research Commission (Project No. K5/2733). WS was supported by Biogeochemistry Research Infrastructure Platform (BIOGRIP), funded by the Department of Science and Innovation of South Africa.
Funding Information:
The authors wish to thank Edward Archer, Mercia Volschenk, and the City of Cape Town for assisting with and permitting sampling of WWTW, the Central Analytical Facility at Stellenbosch University for DNA sequencing support, and the financial assistance from the NRF, WRC, and BIOGRIP.
PY - 2022/5/16
Y1 - 2022/5/16
N2 - With their large, diverse microbial communities chronically exposed to sub-inhibitory antibiotic concentrations, wastewater treatment works (WWTW) have been deemed hotspots for the emergence and dissemination of antimicrobial resistance, with growing concern about the transmission of antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB) into receiving surface waters. This study explored (1) the prevalence of ARG and ARB in local WWTW, (2) the effect of sub-inhibitory antimicrobial exposure on ARG copy numbers in pure cultures from WWTW, and (3) two WWTW with different treatment configurations. For each WWTW, qPCR determined the prevalence of mcr3, sul1, sul2, and blaKPC during the treatment process, and culture methods were used to enumerate and identify ARB. Bacterial colonies isolated from effluent samples were identified by 16S rDNA sequencing and their respective minimum inhibitory concentrations (MIC) were determined. These were compared to the MICs of whole community samples from the influent, return activated sludge, and effluent of each WWTW. Resistance genes were quantified in 11 isolated cultures before and after exposure to sub-MIC concentrations of target antibiotics. The numbers of ARG and ARB in both WWTW effluents were notably reduced compared to the influent. Sul1 and sul2 gene copies increased in cultures enriched in sub-MIC concentrations of sulfamethoxazole, while blaKPC decreased after exposure to amoxicillin. It was concluded, within the parameters of this study, that WWTW assist in reducing ARG and ARB, but that sub-inhibitory exposure to antimicrobials has a varied effect on ARG copy number in pure cultures.
AB - With their large, diverse microbial communities chronically exposed to sub-inhibitory antibiotic concentrations, wastewater treatment works (WWTW) have been deemed hotspots for the emergence and dissemination of antimicrobial resistance, with growing concern about the transmission of antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB) into receiving surface waters. This study explored (1) the prevalence of ARG and ARB in local WWTW, (2) the effect of sub-inhibitory antimicrobial exposure on ARG copy numbers in pure cultures from WWTW, and (3) two WWTW with different treatment configurations. For each WWTW, qPCR determined the prevalence of mcr3, sul1, sul2, and blaKPC during the treatment process, and culture methods were used to enumerate and identify ARB. Bacterial colonies isolated from effluent samples were identified by 16S rDNA sequencing and their respective minimum inhibitory concentrations (MIC) were determined. These were compared to the MICs of whole community samples from the influent, return activated sludge, and effluent of each WWTW. Resistance genes were quantified in 11 isolated cultures before and after exposure to sub-MIC concentrations of target antibiotics. The numbers of ARG and ARB in both WWTW effluents were notably reduced compared to the influent. Sul1 and sul2 gene copies increased in cultures enriched in sub-MIC concentrations of sulfamethoxazole, while blaKPC decreased after exposure to amoxicillin. It was concluded, within the parameters of this study, that WWTW assist in reducing ARG and ARB, but that sub-inhibitory exposure to antimicrobials has a varied effect on ARG copy number in pure cultures.
KW - antibiotic resistance genes
KW - colistin
KW - sub-inhibitory antibiotic concentrations
KW - sulfamethoxazole
KW - wastewater effluent
KW - β-lactamases
UR - http://www.scopus.com/inward/record.url?scp=85131602761&partnerID=8YFLogxK
U2 - 10.3389/frwa.2022.883282
DO - 10.3389/frwa.2022.883282
M3 - Article
AN - SCOPUS:85131602761
VL - 4
JO - Frontiers in Water
JF - Frontiers in Water
SN - 2624-9375
M1 - 883282
ER -