Voltammetric Monitoring of a Solid-Liquid Phase Transition in N,N,N’,N’-Tetraoctyl-2,6-diamino-9,10-anthraquinone (TODAQ)

Sun Yhik Ahn, Thomas Forder, Matthew Jones, Richard Blackburn, Paul Fordred, Steven Bull, Frank Marken

Research output: Contribution to journalArticlepeer-review

5 Downloads (Pure)


Exploratory experiments on effects from a phase transition are reported for a low-melting microcrystalline anthraquinone (N,N,N′,N′-tetraoctyl-2,6-diamino-9,10-anthraquinone or TODAQ). Data for the solid-liquid phase transition are obtained by differential scanning calorimetry and then compared to data obtained by voltammetry. In preliminary electrochemical measurements, microcrystal deposits on a basal plane pyrolytic graphite electrode are shown to undergo a solid-state 2-electron 2-proton reduction in contact to aqueous 0.1 M HClO 4 with a midpoint potential E mid,solid = − 0.24 V vs. SCE. The reduction mechanism is proposed to be limited mainly by the triple phase boundary line and some transport of TODAQ molecules towards the electrode surface for both solid and melt. A change in the apparent activation energy for this reduction is observed at 69 °C, leading to an enhanced increase in reduction current with midpoint potential E mid,liquid = − 0.36 V vs. SCE. A change of TODAQ transport along the crystal surface for solid microcrystalline material (for the solid) to diffusion within molten microdroplets (for the liquid) is proposed. Upon cooling, a transition at 60 °C back to a higher apparent activation energy is seen consistent with re-solidification of the molten phase at the electrode surface. Differential scanning calorimetry data for solid TODAQ dry and for TODAQ in contact to aqueous 0.1 M HClO 4 confirm these transitions. [Figure not available: see fulltext.].

Original languageEnglish
Pages (from-to)11-16
Number of pages6
JournalJournal of Solid State Electrochemistry
Issue number1
Early online date25 Nov 2019
Publication statusPublished - 31 Jan 2020

Bibliographical note

Funding Information:
S.A. thanks Inochem Ltd. and the Faculty of Science, University of Bath, for financial support. F.M. acknowledges financial support from the EPSRC (EP/K004956/1). T.R.F acknowledges the EPSRC (EP/G03768X/1) for funding from the DTC at Bath. Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Publisher Copyright:
© 2019, The Author(s).


  • Battery materials
  • Calorimetry
  • Melting point
  • Phase transition
  • Plastic crystalline solids
  • Triple phase boundary
  • Voltammetry

ASJC Scopus subject areas

  • General Materials Science
  • Condensed Matter Physics
  • Electrochemistry
  • Electrical and Electronic Engineering


Dive into the research topics of 'Voltammetric Monitoring of a Solid-Liquid Phase Transition in N,N,N’,N’-Tetraoctyl-2,6-diamino-9,10-anthraquinone (TODAQ)'. Together they form a unique fingerprint.

Cite this