Abstract
A voltammetric sensor for the determination of chloride ions is proposed. At trace level, Hg(II) ions (ca. 15 × 10-12 mol or only approximately 3 Hg2+ cations per carbon nanoparticle) are adsorbed at the surface of amine-functionalized carbon nanoparticles in a film supported on a glassy carbon electrode. With this redox-active film, voltammetric chloride determination is possible without loss of mercury/signal in repeatable measurements and over a very wide chloride concentration range. The sensor mechanism is based on the shift of the voltammetric peak potential for the Hg/Hg2Cl2 redox transformation in the presence of chloride anions. Only trace-level mercury is employed, so that problems associated with traditional bulk mercury electrodes are not encountered. Differential pulse voltammograms were recorded over a wide range of chloride concentrations resulting in two regimes (from 5 ×10-5 to 1 M and from 1 to 3 M) with linear peak potential shift with a chloride concentration of -63.2 ± 0.09 mV/pCl and -109.1 ± 0.4 mV/pCl, respectively (at 25 °C). The sensor performance is promising in real samples, such as lake water, sea water, and table salt.
Original language | English |
---|---|
Article number | 7981319 |
Pages (from-to) | 5437-5443 |
Number of pages | 7 |
Journal | IEEE Sensors Journal |
Volume | 17 |
Issue number | 17 |
DOIs | |
Publication status | Published - 1 Sept 2017 |
Keywords
- Chloride
- corrosion
- nanocarbon
- saline
- voltammetric sensor
ASJC Scopus subject areas
- Instrumentation
- Electrical and Electronic Engineering