Projects per year
Abstract
Cu2ZnSnS4 (CZTS) is a promising material for photovoltaic and thermoelectric applications. Issues with quaternary semiconductors include chemical disorder (e.g., Cu–Zn antisites) and disproportionation into secondary phases (e.g., ZnS and Cu2 SnS 3). To provide a reference for the pure kesterite structure, we report the vibrational spectra—including both infra-red and Raman intensities—from lattice-dynamics calculations using first-principles force constants. Three-phonon interactions are used to estimate phonon lifetimes (spectral linewidths) and thermal conductivity. CZTS exhibits a remarkably low lattice thermal conductivity, competitive with high-performance thermoelectric materials. Transition from the sulfide to selenide (Cu2ZnSnSe4) results in softening of the phonon modes and an increase in phonon lifetimes.
Original language | English |
---|---|
Article number | 041102 |
Journal | APL Materials |
Volume | 3 |
Issue number | 4 |
DOIs | |
Publication status | Published - 1 Apr 2015 |
Fingerprint
Dive into the research topics of 'Vibrational spectra and lattice thermal conductivity of kesterite-structured Cu2ZnSnS4 and Cu2ZnSnSe4'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Applying Long-Lived Metastable States in Switchable Functionality via Kinetic Control of Molecular Assembly
Raithby, P. (PI), Burrows, A. (CoI), Lewis, D. (CoI), Marken, F. (CoI), Parker, S. (CoI), Walsh, A. (CoI) & Wilson, C. (CoI)
Engineering and Physical Sciences Research Council
1/11/12 → 30/04/18
Project: Research council