Verifying community-wide exposure to endocrine disruptors in personal care products – In quest for metabolic biomarkers of exposure via in vitro studies and wastewater-based epidemiology

Luigi Lopardo, David Adams, Andrew Cummins, Barbara Kasprzyk-Hordern

Research output: Contribution to journalArticlepeer-review

17 Citations (Scopus)
70 Downloads (Pure)

Abstract

This study aimed to identify human specific metabolites of selected known or suspected endocrine disruptors (EDCs), mainly UV filters, used in personal care and consumer products whose metabolism has hardly been explored and to select suitable candidate biomarkers for human exposure studies using wastewater based epidemiology (WBE). The analysis of metabolic biomarkers of target chemicals is crucial in order to distinguish between internal and external exposure, since many sources contribute to chemicals being discharged into wastewater. This was achieved through the employment of a new analytical framework for verification of biomarkers of exposure to chemicals combining human biomonitoring and water fingerprinting. Eight EDCs with unknown metabolic pathways (benzophenone-1 (BP-1); benzophenone-2 (BP-2); 4,4′-dihydroxybenzophenone (4,4′-DHBP); 4-benzylphenol (4-BenzPh); homosalate (HO); octocrylene (OC); 3-benzylidene camphor (3-BC), and two EDCs with known metabolism (bisphenol A (BPA) and benzophenone-3 (BP-3)) were tested. The biotransformation observed consisted mainly of phase I processes such as hydrolysis and hydroxylation together with phase II conjugation reactions such as sulphation and glucuronidation. Only two chemicals (BP-1, BP-3) were identified in urine and three chemicals (BPA, BP-1, BP-3) in wastewater. Five newly discovered metabolites (HO-Met1, OC-Met1, 4-BenzPh-Met4, 4-BenzPh-Met5 and 4-BenzPh-Met6) and one previously known metabolite (BPA-Met3) were detected in tested urine/wastewater samples from five WWTPs serving large communities ranging between 17 and 100 thousand inhabitants. The presence of metabolic biotransformation products of OC, 4-BenzPh, BPA and HO in wastewater provides evidence for internal exposure of studied populations to these chemicals.

Original languageEnglish
Pages (from-to)117-126
Number of pages10
JournalWater Research
Volume143
Early online date14 Jun 2018
DOIs
Publication statusPublished - 15 Oct 2018

Keywords

  • Endocrine disruptor
  • Environment
  • Epidemiology
  • Exposure
  • Personal care product
  • UV filter
  • Wastewater

ASJC Scopus subject areas

  • Ecological Modelling
  • Water Science and Technology
  • Waste Management and Disposal
  • Pollution

Fingerprint Dive into the research topics of 'Verifying community-wide exposure to endocrine disruptors in personal care products – In quest for metabolic biomarkers of exposure via in vitro studies and wastewater-based epidemiology'. Together they form a unique fingerprint.

Cite this