Variation in surface energy and reduction drive of a metal oxide lithium-ion anode with stoichiometry

a DFT study of lithium titanate spinel surfaces

Benjamin J. Morgan, Javier Carrasco, Gilberto Teobaldi

Research output: Contribution to journalArticle

2 Citations (Scopus)
94 Downloads (Pure)

Abstract

Li4Ti5O12 is a “zero-strain” lithium-ion anode material that shows excellent stability over repeated lithium insertion–extraction cycles. Although lithium (de)intercalation in the bulk material has been well characterised, our understanding of surface atomic- scale–structure and the relationship with electrochemical behaviour is incomplete. To address this, we have modelled the Li4Ti5O12 (111) , Li7Ti5O12 (111) and α-Li2TiO3 (100), (110), and (111) α-Li2TiO3 surfaces using Hubbard-corrected density- functional theory (GGA+U), screening more than 600 stoichiometric Li4Ti5O12 and Li7Ti5O12 (111) surfaces. For Li4Ti5O12 and Li7Ti5O12 we find Li-terminated surfaces are more stable than mixed Li/Ti-terminated surfaces, which typically reconstruct. For α-Li2TiO3, the (100) surface energy is significantly lower than for the (110) and (111) surfaces, and is competitive with the pristine Li7Ti5O12 (111) surface. Using these stoichiometric surfaces as reference, we also model variation in Li surface coverage as a function of lithium chemical potential. For Li4Ti5O12, the stoichiometric surface is most stable across the full chemical potential range of thermodymamic stability, whereas for Li7Ti5O12, Li deficient surfaces are stablised at low Li chemical potentials. The highest occupied electronic state for Li7Ti5O12 (111) is 2.56 eV below the vacuum energy. This is 0.3 eV smaller than the work function for metallic lithium, indicating an extreme thermodynamic drive for reduction. In contrast, the highest occupied state for the α-Li2TiO3 (100) surface is 4.71 eV below the vacuum level, indicating a substantially lower reduction drive. This result demonstrates how stoichiometry can strongly affect the thermodynamic drive for reduction at metal-oxide–electrode surfaces. In this context, we conclude by discussing the design of highly-reducible metal-oxide electrode coatings, with the potential for controlled solid-electrolyte–interphase formation via equilibrium chemistry, by electrode wetting in the absence of any applied bias.
Original languageEnglish
Pages (from-to)17180-17192
JournalJournal of Materials Chemistry A
Volume4
Issue number43
Early online date21 Oct 2016
DOIs
Publication statusPublished - 21 Nov 2016

Fingerprint

Lithium
Interfacial energy
Discrete Fourier transforms
Stoichiometry
Oxides
Anodes
Metals
Ions
Chemical potential
spinell
Electrodes
Thermodynamics
Vacuum
Solid electrolytes
Electronic states
Intercalation
Density functional theory
Wetting
Screening

Cite this

Variation in surface energy and reduction drive of a metal oxide lithium-ion anode with stoichiometry : a DFT study of lithium titanate spinel surfaces. / Morgan, Benjamin J.; Carrasco, Javier; Teobaldi, Gilberto.

In: Journal of Materials Chemistry A, Vol. 4, No. 43, 21.11.2016, p. 17180-17192.

Research output: Contribution to journalArticle

@article{6e65a63405ee48d38c9b16f69b1a5525,
title = "Variation in surface energy and reduction drive of a metal oxide lithium-ion anode with stoichiometry: a DFT study of lithium titanate spinel surfaces",
abstract = "Li4Ti5O12 is a “zero-strain” lithium-ion anode material that shows excellent stability over repeated lithium insertion–extraction cycles. Although lithium (de)intercalation in the bulk material has been well characterised, our understanding of surface atomic- scale–structure and the relationship with electrochemical behaviour is incomplete. To address this, we have modelled the Li4Ti5O12 (111) , Li7Ti5O12 (111) and α-Li2TiO3 (100), (110), and (111) α-Li2TiO3 surfaces using Hubbard-corrected density- functional theory (GGA+U), screening more than 600 stoichiometric Li4Ti5O12 and Li7Ti5O12 (111) surfaces. For Li4Ti5O12 and Li7Ti5O12 we find Li-terminated surfaces are more stable than mixed Li/Ti-terminated surfaces, which typically reconstruct. For α-Li2TiO3, the (100) surface energy is significantly lower than for the (110) and (111) surfaces, and is competitive with the pristine Li7Ti5O12 (111) surface. Using these stoichiometric surfaces as reference, we also model variation in Li surface coverage as a function of lithium chemical potential. For Li4Ti5O12, the stoichiometric surface is most stable across the full chemical potential range of thermodymamic stability, whereas for Li7Ti5O12, Li deficient surfaces are stablised at low Li chemical potentials. The highest occupied electronic state for Li7Ti5O12 (111) is 2.56 eV below the vacuum energy. This is 0.3 eV smaller than the work function for metallic lithium, indicating an extreme thermodynamic drive for reduction. In contrast, the highest occupied state for the α-Li2TiO3 (100) surface is 4.71 eV below the vacuum level, indicating a substantially lower reduction drive. This result demonstrates how stoichiometry can strongly affect the thermodynamic drive for reduction at metal-oxide–electrode surfaces. In this context, we conclude by discussing the design of highly-reducible metal-oxide electrode coatings, with the potential for controlled solid-electrolyte–interphase formation via equilibrium chemistry, by electrode wetting in the absence of any applied bias.",
author = "Morgan, {Benjamin J.} and Javier Carrasco and Gilberto Teobaldi",
year = "2016",
month = "11",
day = "21",
doi = "10.1039/C6TA05980E",
language = "English",
volume = "4",
pages = "17180--17192",
journal = "Journal of Materials Chemistry A",
issn = "2050-7488",
publisher = "Royal Society of Chemistry",
number = "43",

}

TY - JOUR

T1 - Variation in surface energy and reduction drive of a metal oxide lithium-ion anode with stoichiometry

T2 - a DFT study of lithium titanate spinel surfaces

AU - Morgan, Benjamin J.

AU - Carrasco, Javier

AU - Teobaldi, Gilberto

PY - 2016/11/21

Y1 - 2016/11/21

N2 - Li4Ti5O12 is a “zero-strain” lithium-ion anode material that shows excellent stability over repeated lithium insertion–extraction cycles. Although lithium (de)intercalation in the bulk material has been well characterised, our understanding of surface atomic- scale–structure and the relationship with electrochemical behaviour is incomplete. To address this, we have modelled the Li4Ti5O12 (111) , Li7Ti5O12 (111) and α-Li2TiO3 (100), (110), and (111) α-Li2TiO3 surfaces using Hubbard-corrected density- functional theory (GGA+U), screening more than 600 stoichiometric Li4Ti5O12 and Li7Ti5O12 (111) surfaces. For Li4Ti5O12 and Li7Ti5O12 we find Li-terminated surfaces are more stable than mixed Li/Ti-terminated surfaces, which typically reconstruct. For α-Li2TiO3, the (100) surface energy is significantly lower than for the (110) and (111) surfaces, and is competitive with the pristine Li7Ti5O12 (111) surface. Using these stoichiometric surfaces as reference, we also model variation in Li surface coverage as a function of lithium chemical potential. For Li4Ti5O12, the stoichiometric surface is most stable across the full chemical potential range of thermodymamic stability, whereas for Li7Ti5O12, Li deficient surfaces are stablised at low Li chemical potentials. The highest occupied electronic state for Li7Ti5O12 (111) is 2.56 eV below the vacuum energy. This is 0.3 eV smaller than the work function for metallic lithium, indicating an extreme thermodynamic drive for reduction. In contrast, the highest occupied state for the α-Li2TiO3 (100) surface is 4.71 eV below the vacuum level, indicating a substantially lower reduction drive. This result demonstrates how stoichiometry can strongly affect the thermodynamic drive for reduction at metal-oxide–electrode surfaces. In this context, we conclude by discussing the design of highly-reducible metal-oxide electrode coatings, with the potential for controlled solid-electrolyte–interphase formation via equilibrium chemistry, by electrode wetting in the absence of any applied bias.

AB - Li4Ti5O12 is a “zero-strain” lithium-ion anode material that shows excellent stability over repeated lithium insertion–extraction cycles. Although lithium (de)intercalation in the bulk material has been well characterised, our understanding of surface atomic- scale–structure and the relationship with electrochemical behaviour is incomplete. To address this, we have modelled the Li4Ti5O12 (111) , Li7Ti5O12 (111) and α-Li2TiO3 (100), (110), and (111) α-Li2TiO3 surfaces using Hubbard-corrected density- functional theory (GGA+U), screening more than 600 stoichiometric Li4Ti5O12 and Li7Ti5O12 (111) surfaces. For Li4Ti5O12 and Li7Ti5O12 we find Li-terminated surfaces are more stable than mixed Li/Ti-terminated surfaces, which typically reconstruct. For α-Li2TiO3, the (100) surface energy is significantly lower than for the (110) and (111) surfaces, and is competitive with the pristine Li7Ti5O12 (111) surface. Using these stoichiometric surfaces as reference, we also model variation in Li surface coverage as a function of lithium chemical potential. For Li4Ti5O12, the stoichiometric surface is most stable across the full chemical potential range of thermodymamic stability, whereas for Li7Ti5O12, Li deficient surfaces are stablised at low Li chemical potentials. The highest occupied electronic state for Li7Ti5O12 (111) is 2.56 eV below the vacuum energy. This is 0.3 eV smaller than the work function for metallic lithium, indicating an extreme thermodynamic drive for reduction. In contrast, the highest occupied state for the α-Li2TiO3 (100) surface is 4.71 eV below the vacuum level, indicating a substantially lower reduction drive. This result demonstrates how stoichiometry can strongly affect the thermodynamic drive for reduction at metal-oxide–electrode surfaces. In this context, we conclude by discussing the design of highly-reducible metal-oxide electrode coatings, with the potential for controlled solid-electrolyte–interphase formation via equilibrium chemistry, by electrode wetting in the absence of any applied bias.

UR - http://dx.doi.org/10.1039/C6TA05980E

UR - http://dx.doi.org/10.1039/C6TA05980E

U2 - 10.1039/C6TA05980E

DO - 10.1039/C6TA05980E

M3 - Article

VL - 4

SP - 17180

EP - 17192

JO - Journal of Materials Chemistry A

JF - Journal of Materials Chemistry A

SN - 2050-7488

IS - 43

ER -