Projects per year
Abstract
Take the linearised FKPP equation ∂th=∂2xh+h∂th=∂x2h+h with boundary condition h(m(t), t) = 0. Depending on the behaviour of the initial condition h 0(x) = h(x, 0) we obtain the asymptotics—up to a o(1) term r(t)—of the absorbing boundary m(t) such that ω(x):=limt→∞h(x+m(t),t)ω(x):=limt→∞h(x+m(t),t) exists and is non-trivial. In particular, as in Bramson’s results for the non-linear FKPP equation, we recover the celebrated −3/2logt−3/2logt correction for initial conditions decaying faster than xνe−xxνe−x for some ν<−2ν<−2. Furthermore, when we are in this regime, the main result of the present work is the identification (to first order) of the r(t) term, which ensures the fastest convergence to ω(x)ω(x). When h 0(x) decays faster than xνe−xxνe−x for some ν<−3ν<−3, we show that r(t) must be chosen to be −3π/t−−−√−3π/t, which is precisely the term predicted heuristically by Ebert–van Saarloos (Phys. D Nonlin. Phenom. 146(1): 1–99, 2000) in the non-linear case (see also Mueller and Munier Phys Rev E 90(4):042143, 2014, Henderson, Commun Math Sci 14(4):973–985, 2016, Brunet and Derrida Stat Phys 1-20, 2015). When the initial condition decays as xνe−xxνe−x for some ν∈[−3,−2)ν∈[−3,−2), we show that even though we are still in the regime where Bramson’s correction is −3/2logt−3/2logt, the Ebert–van Saarloos correction has to be modified. Similar results were recently obtained by Henderson CommunMath Sci 14(4):973–985, 2016 using an analytical approach and only for compactly supported initial conditions.
Original language | English |
---|---|
Pages (from-to) | 857-893 |
Number of pages | 37 |
Journal | Communications in Mathematical Physics |
Volume | 349 |
Issue number | 3 |
Early online date | 23 Dec 2016 |
DOIs | |
Publication status | Published - 30 Jan 2017 |
Fingerprint
Dive into the research topics of 'Vanishing corrections for the position in a linear model of FKPP fronts'. Together they form a unique fingerprint.Projects
- 1 Finished
-
EPSRC Posdoctoral Fellowship in Applied Probability for Dr Matthew I Roberts
Roberts, M. (PI)
Engineering and Physical Sciences Research Council
3/04/13 → 2/07/16
Project: Research council
Profiles
-
Matthew Roberts
- Department of Mathematical Sciences - Royal Society University Research Fellow
- EPSRC Centre for Doctoral Training in Statistical Applied Mathematics (SAMBa)
- Probability Laboratory at Bath
Person: Research & Teaching