Abstract
A coupled method for solid/fluid steady heat transfer calculations is presented. The results of the fully coupled and uncoupled simulations are compared with the experimental data obtained for the front and rear stator well of a turbine. Several cooling mass flow rates have been considered. The uncoupled methodology is described as well and the accuracy of the results for both approaches is discussed. It is concluded that even if the uncoupled approach it is conducted carefully, the coupled method is more accurate since it removes some hypotheses inherent to the uncoupled approach.
Original language | English |
---|---|
Title of host publication | ASME 2011 Turbo Expo |
Subtitle of host publication | Turbine Technical Conference and Exposition, GT2011 |
Publisher | American Society of Mechanical Engineers (ASME) |
Pages | 893-903 |
Number of pages | 11 |
Edition | PARTS A AND B |
ISBN (Print) | 9780791854655 |
DOIs | |
Publication status | Published - 31 Dec 2011 |
Event | ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition, GT2011 - Vancouver, BC, Canada Duration: 6 Jun 2011 → 10 Jun 2011 |
Publication series
Name | Proceedings of the ASME Turbo Expo |
---|---|
Number | PARTS A AND B |
Volume | 5 |
Conference
Conference | ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition, GT2011 |
---|---|
Country/Territory | Canada |
City | Vancouver, BC |
Period | 6/06/11 → 10/06/11 |
Bibliographical note
Copyright:Copyright 2013 Elsevier B.V., All rights reserved.
ASJC Scopus subject areas
- General Engineering