Validated FE models of vertebral bodies predict displacements and strains from axial impact loading

Research output: Contribution to conferencePoster

Abstract

Finite Element (FE) method has been extensively applied to understand the behaviour of bone, including vertebral bodies (VBs), subject to loading with most studies so far having focused on quasi-static conditions. Dynamic studies are, however, important as they can provide insights into how injuries arise from high energy collisions, such as those that can be experienced in sport and road traffic accidents. The aim of this study was to develop and validate a methodology for FE modelling of VBs subject to impact loading. Seven (n=7) VBs from four different porcine spines were stripped of all soft tissues, cemented into polyoxymethylene pots, µCT-scanned and positioned in an impact cage. An impact was applied to the VBs via a falling mass of 7.4kg at a velocity of 3.1m/s. Surface displacements and strains were acquired from the anterior VB surface via DIC [Photron,UK] and the impact load was monitored with two loadcells, one cranial and one caudal. Specimen-specific FE models were created based on µCT images. Material properties were assigned based on Hounsfield units and the density-Young`s modulus relationship, validated by previous static experiments, was calibrated for the dynamic case using a factor (KImpact). All DOFs of the caudal pot were locked while the cranial pot was free to move vertically, with the experimental cranial load profile being applied to it, matching experimental conditions. Experimental and numerical load-displacement (LxD) curves were compared using Bland-Altman plots, RMSE and Lin’s concordance coefficient (CCC). With KImpact=0.0825, five models presented good agreement with experimental data, with average RMSE and CCC for LxD being, respectively, 0.036mm and 0.889. For peak load, maximum displacements and strains were, on average, 0.4mm and 0.035, respectively and most Bland-Altman plots showed dispersion around zero. The remaining two models showed poor agreement, with average RMSE and CCC for LxD being, respectively, 0.06mm and 0.32. However, overall strains levels, peak strains and peak strain locations were similar between experimental and numerical models. The majority of FE models had good agreement with experiments and, after calibration, they predicted the dynamic behaviour of VBs.
Original languageEnglish
Publication statusPublished - 2019
EventBone Research Society and British Orthopaedic Research Society 5th Joint Meeting - Sir Martin Evans Building, School of Biosciences, Cardiff University, Cardiff, UK United Kingdom
Duration: 4 Sep 20196 Sep 2019
https://boneresearchsociety.org/meeting/cardiff2019/

Conference

ConferenceBone Research Society and British Orthopaedic Research Society 5th Joint Meeting
Abbreviated titleBRS/BORS 5th Joint Meeting
CountryUK United Kingdom
CityCardiff
Period4/09/196/09/19
Internet address

Cite this

Agostinho Hernandez, B., Gill, R., & Gheduzzi, S. (2019). Validated FE models of vertebral bodies predict displacements and strains from axial impact loading. Poster session presented at Bone Research Society and British Orthopaedic Research Society 5th Joint Meeting, Cardiff, UK United Kingdom.

Validated FE models of vertebral bodies predict displacements and strains from axial impact loading. / Agostinho Hernandez, Bruno; Gill, Richie; Gheduzzi, Sabina.

2019. Poster session presented at Bone Research Society and British Orthopaedic Research Society 5th Joint Meeting, Cardiff, UK United Kingdom.

Research output: Contribution to conferencePoster

Agostinho Hernandez, B, Gill, R & Gheduzzi, S 2019, 'Validated FE models of vertebral bodies predict displacements and strains from axial impact loading' Bone Research Society and British Orthopaedic Research Society 5th Joint Meeting, Cardiff, UK United Kingdom, 4/09/19 - 6/09/19, .
Agostinho Hernandez B, Gill R, Gheduzzi S. Validated FE models of vertebral bodies predict displacements and strains from axial impact loading. 2019. Poster session presented at Bone Research Society and British Orthopaedic Research Society 5th Joint Meeting, Cardiff, UK United Kingdom.
Agostinho Hernandez, Bruno ; Gill, Richie ; Gheduzzi, Sabina. / Validated FE models of vertebral bodies predict displacements and strains from axial impact loading. Poster session presented at Bone Research Society and British Orthopaedic Research Society 5th Joint Meeting, Cardiff, UK United Kingdom.
@conference{3b89ba53694b4184a267fe928ef3d615,
title = "Validated FE models of vertebral bodies predict displacements and strains from axial impact loading",
abstract = "Finite Element (FE) method has been extensively applied to understand the behaviour of bone, including vertebral bodies (VBs), subject to loading with most studies so far having focused on quasi-static conditions. Dynamic studies are, however, important as they can provide insights into how injuries arise from high energy collisions, such as those that can be experienced in sport and road traffic accidents. The aim of this study was to develop and validate a methodology for FE modelling of VBs subject to impact loading. Seven (n=7) VBs from four different porcine spines were stripped of all soft tissues, cemented into polyoxymethylene pots, µCT-scanned and positioned in an impact cage. An impact was applied to the VBs via a falling mass of 7.4kg at a velocity of 3.1m/s. Surface displacements and strains were acquired from the anterior VB surface via DIC [Photron,UK] and the impact load was monitored with two loadcells, one cranial and one caudal. Specimen-specific FE models were created based on µCT images. Material properties were assigned based on Hounsfield units and the density-Young`s modulus relationship, validated by previous static experiments, was calibrated for the dynamic case using a factor (KImpact). All DOFs of the caudal pot were locked while the cranial pot was free to move vertically, with the experimental cranial load profile being applied to it, matching experimental conditions. Experimental and numerical load-displacement (LxD) curves were compared using Bland-Altman plots, RMSE and Lin’s concordance coefficient (CCC). With KImpact=0.0825, five models presented good agreement with experimental data, with average RMSE and CCC for LxD being, respectively, 0.036mm and 0.889. For peak load, maximum displacements and strains were, on average, 0.4mm and 0.035, respectively and most Bland-Altman plots showed dispersion around zero. The remaining two models showed poor agreement, with average RMSE and CCC for LxD being, respectively, 0.06mm and 0.32. However, overall strains levels, peak strains and peak strain locations were similar between experimental and numerical models. The majority of FE models had good agreement with experiments and, after calibration, they predicted the dynamic behaviour of VBs.",
author = "{Agostinho Hernandez}, Bruno and Richie Gill and Sabina Gheduzzi",
year = "2019",
language = "English",
note = "Bone Research Society and British Orthopaedic Research Society 5th Joint Meeting, BRS/BORS 5th Joint Meeting ; Conference date: 04-09-2019 Through 06-09-2019",
url = "https://boneresearchsociety.org/meeting/cardiff2019/",

}

TY - CONF

T1 - Validated FE models of vertebral bodies predict displacements and strains from axial impact loading

AU - Agostinho Hernandez, Bruno

AU - Gill, Richie

AU - Gheduzzi, Sabina

PY - 2019

Y1 - 2019

N2 - Finite Element (FE) method has been extensively applied to understand the behaviour of bone, including vertebral bodies (VBs), subject to loading with most studies so far having focused on quasi-static conditions. Dynamic studies are, however, important as they can provide insights into how injuries arise from high energy collisions, such as those that can be experienced in sport and road traffic accidents. The aim of this study was to develop and validate a methodology for FE modelling of VBs subject to impact loading. Seven (n=7) VBs from four different porcine spines were stripped of all soft tissues, cemented into polyoxymethylene pots, µCT-scanned and positioned in an impact cage. An impact was applied to the VBs via a falling mass of 7.4kg at a velocity of 3.1m/s. Surface displacements and strains were acquired from the anterior VB surface via DIC [Photron,UK] and the impact load was monitored with two loadcells, one cranial and one caudal. Specimen-specific FE models were created based on µCT images. Material properties were assigned based on Hounsfield units and the density-Young`s modulus relationship, validated by previous static experiments, was calibrated for the dynamic case using a factor (KImpact). All DOFs of the caudal pot were locked while the cranial pot was free to move vertically, with the experimental cranial load profile being applied to it, matching experimental conditions. Experimental and numerical load-displacement (LxD) curves were compared using Bland-Altman plots, RMSE and Lin’s concordance coefficient (CCC). With KImpact=0.0825, five models presented good agreement with experimental data, with average RMSE and CCC for LxD being, respectively, 0.036mm and 0.889. For peak load, maximum displacements and strains were, on average, 0.4mm and 0.035, respectively and most Bland-Altman plots showed dispersion around zero. The remaining two models showed poor agreement, with average RMSE and CCC for LxD being, respectively, 0.06mm and 0.32. However, overall strains levels, peak strains and peak strain locations were similar between experimental and numerical models. The majority of FE models had good agreement with experiments and, after calibration, they predicted the dynamic behaviour of VBs.

AB - Finite Element (FE) method has been extensively applied to understand the behaviour of bone, including vertebral bodies (VBs), subject to loading with most studies so far having focused on quasi-static conditions. Dynamic studies are, however, important as they can provide insights into how injuries arise from high energy collisions, such as those that can be experienced in sport and road traffic accidents. The aim of this study was to develop and validate a methodology for FE modelling of VBs subject to impact loading. Seven (n=7) VBs from four different porcine spines were stripped of all soft tissues, cemented into polyoxymethylene pots, µCT-scanned and positioned in an impact cage. An impact was applied to the VBs via a falling mass of 7.4kg at a velocity of 3.1m/s. Surface displacements and strains were acquired from the anterior VB surface via DIC [Photron,UK] and the impact load was monitored with two loadcells, one cranial and one caudal. Specimen-specific FE models were created based on µCT images. Material properties were assigned based on Hounsfield units and the density-Young`s modulus relationship, validated by previous static experiments, was calibrated for the dynamic case using a factor (KImpact). All DOFs of the caudal pot were locked while the cranial pot was free to move vertically, with the experimental cranial load profile being applied to it, matching experimental conditions. Experimental and numerical load-displacement (LxD) curves were compared using Bland-Altman plots, RMSE and Lin’s concordance coefficient (CCC). With KImpact=0.0825, five models presented good agreement with experimental data, with average RMSE and CCC for LxD being, respectively, 0.036mm and 0.889. For peak load, maximum displacements and strains were, on average, 0.4mm and 0.035, respectively and most Bland-Altman plots showed dispersion around zero. The remaining two models showed poor agreement, with average RMSE and CCC for LxD being, respectively, 0.06mm and 0.32. However, overall strains levels, peak strains and peak strain locations were similar between experimental and numerical models. The majority of FE models had good agreement with experiments and, after calibration, they predicted the dynamic behaviour of VBs.

M3 - Poster

ER -