Abstract
Satellites allow large-scale surveys to be conducted in short time periods with repeat surveys possible at intervals of <24 h. Very-high-resolution satellite imagery has been successfully used to detect and count a number of wildlife species in open, homogeneous landscapes and seascapes where target animals have a strong contrast with their environment. However, no research to date has detected animals in complex heterogeneous environments or detected elephants from space using very-high-resolution satellite imagery and deep learning. In this study, we apply a Convolution Neural Network (CNN) model to automatically detect and count African elephants in a woodland savanna ecosystem in South Africa. We use WorldView-3 and 4 satellite data –the highest resolution satellite imagery commercially available. We train and test the model on 11 images from 2014 to 2019. We compare the performance accuracy of the CNN against human accuracy. Additionally, we apply the model on a coarser resolution satellite image (GeoEye-1) captured in Kenya, without any additional training data, to test if the algorithm can generalize to an elephant population outside of the training area. Our results show that the CNN performs with high accuracy, comparable to human detection capabilities. The detection accuracy (i.e., F2 score) of the CNN models was 0.78 in heterogeneous areas and 0.73 in homogenous areas. This compares with the detection accuracy of the human labels with an averaged F2 score 0.77 in heterogeneous areas and 0.80 in homogenous areas. The CNN model can generalize to detect elephants in a different geographical location and from a lower resolution satellite. Our study demonstrates the feasibility of applying state-of-the-art satellite remote sensing and deep learning technologies for detecting and counting African elephants in heterogeneous landscapes. The study showcases the feasibility of using high resolution satellite imagery as a promising new wildlife surveying technique. Through creation of a customized training dataset and application of a Convolutional Neural Network, we have automated the detection of elephants in satellite imagery with accuracy as high as human detection capabilities. The success of the model to detect elephants outside of the training data site demonstrates the generalizability of the technique.
Original language | English |
---|---|
Pages (from-to) | 369-381 |
Number of pages | 13 |
Journal | Remote Sensing in Ecology and Conservation |
Volume | 7 |
Issue number | 3 |
Early online date | 23 Dec 2020 |
DOIs | |
Publication status | Published - 1 Sept 2021 |
Bibliographical note
Funding Information:We greatly appreciate the generous support by the DigitalGlobe Foundation (Maxar Technologies) and European Space Agency for awarding the image grants to support this work without which this research would not have been possible. We are also grateful to Hexagon Geospatial for providing a complementary license to ERDAS Imagine which enabled us to process the satellite imagery. We are grateful to all the human volunteer labellers for taking the time to label the images and giving us a point of comparison to the CNN. ID is grateful for a bequest to the Wildlife Conservation Research Unit, University of Oxford from the Ralph Mistler Trust which supported her to carry out this research. SR is grateful for funding from the LLoyd's Register Foundation through the Alan Turing Institute’s Data Centric Engineering programme. We are grateful to Sofia Minano Gonzalez and Hannah Cubaynes for their valuable comments on the manuscript.
Funding Information:
We greatly appreciate the generous support by the DigitalGlobe Foundation (Maxar Technologies) and European Space Agency for awarding the image grants to support this work without which this research would not have been possible. We are also grateful to Hexagon Geospatial for providing a complementary license to ERDAS Imagine which enabled us to process the satellite imagery. We are grateful to all the human volunteer labellers for taking the time to label the images and giving us a point of comparison to the CNN. ID is grateful for a bequest to the Wildlife Conservation Research Unit, University of Oxford from the Ralph Mistler Trust which supported her to carry out this research. SR is grateful for funding from the LLoyd's Register Foundation through the Alan Turing Institute?s Data Centric Engineering programme. We are grateful to Sofia Minano Gonzalez and Hannah Cubaynes for their valuable comments on the manuscript.
Publisher Copyright:
© 2020 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
Keywords
- Aerial Survey
- Anthropocene
- Conservation
- Convolutional Neural Network
- Endangered Species
- Machine Learning
- Object Detection
- Wildlife Census
ASJC Scopus subject areas
- Ecology, Evolution, Behavior and Systematics
- Ecology
- Computers in Earth Sciences
- Nature and Landscape Conservation