Machining of single-phase tungsten, used as a plasma facing material in fusion energy reactors, is commonly associated with rapid tool wear and short tool life. Conventional methods of monitoring tool wear or changing cutting tools after a predetermined period are inefficient and can lead to unnecessary tool change or risk damaging the workpiece. Tool wear can adversely affect the surface finish and dimensional tolerances of machined parts. Predicting its onset can avoid this critical damage whilst ensuring maximum tool life is utilised. In this paper, firstly the tool life results in end milling single-phase tungsten using different cutting tool geometries and cutting speeds are provided for the first time. A novel method is proposed by combining sensor signal prediction and classification machine learning models. It works by forecasting the cutting tool bending moment signal which is then used for predicting future cutting tool condition in end milling of pure dense tungsten. A series of machining experiments, covering the whole life of a cutting tool, were performed to collect the sensor signals. The current time series signal from the sensory tool holder is employed to forecast the future signal by training a 1D convolutional neural network (1D CNN) and an artificial neural network (ANN). The forecasted signal is then used to predict the state of the cutting tool in the future. Machine learning classifiers namely, random forest (RF), support vector machine (SVM) and extreme gradient boosting (XGBoost) supervised learning models were trained and validated on actual sensor signals to correlate the tool conditions with specific sensor signal features. The investigations revealed that the 1D CNN performed best in forecasting the time series sensor signal whilst achieving a mean absolute error of 3.37. In addition, the RF, when trained on Wavelet Scattering features, resulted in the most accurate classification of sensor signals for tool condition detection. The analysis showed that the combination of 1D CNN signal forecasting, feature extraction through statistical analyses and RF classifier performs best in predicting the state of a cutting tool in near future. Using this method allows for decision making for changing the tool whilst ensuring that the maximum useful life of a cutting tool is utilised. It also enables preventing undesired damage to the machined surface due to late detection of tool wear or delays in taking appropriate actions. The application of this method can reliably reduce the manufacturing costs and resource consumption associated with cutting tools for machining tungsten and minimise tool wear induced damage to the workpiece.
Original languageEnglish
Pages (from-to)747-771
Number of pages25
JournalInternational Journal of Computer Integrated Manufacturing
Issue number6
Early online date15 Sept 2023
Publication statusE-pub ahead of print - 15 Sept 2023

Bibliographical note

Research Funder: UK Atomic Energy Authority


  • Tungsten
  • machine learning
  • machining
  • neural networks
  • prognostics and health management
  • tool condition monitoring

ASJC Scopus subject areas

  • Mechanical Engineering
  • Industrial and Manufacturing Engineering
  • Computer Science Applications


Dive into the research topics of 'Using machine learning for cutting tool condition monitoring and prediction during machining of tungsten'. Together they form a unique fingerprint.

Cite this