Abstract
A major challenge for Brain Computer Interface systems (BCIs) is dealing with non-stationarity in the EEG signal. There are two types of EEG non-stationarities 1) long-term changes related to fatigue, changes in recording conditions or effects of feedback training which is addressed in classification step and 2) short-term changes related to different mental activities and drifts in slow cortical potentials which can be addressed in the feature extraction step. In this paper we use a covariate shift minimization (CSM) method to alleviate the shortterm (single trial) effects of EEG non-stationarity to improve the performance of self-paced BCIs in detecting foot movement from the continuous EEG signal. The results of applying this unsupervised covariate shift minimization with two different classifiers, linear discriminant analysis (LDA) and probabilistic classification vector machines (PCVMs) along with two different filtering methods (constant bandwidth and constant-Q filters) show the considerable improvement in system performance.
Original language | English |
---|---|
Title of host publication | 2013 IEEE Symposium on Computational Intelligence, Cognitive Algorithms, Mind, and Brain (CCMB) |
Place of Publication | U. S. A. |
Publisher | IEEE Computational Intelligence Society |
Pages | 101-106 |
Number of pages | 6 |
ISBN (Electronic) | 9781467358712 |
Publication status | Published - 19 Apr 2013 |
Event | 2013 IEEE Symposium on Computational Intelligence, Cognitive Algorithms, Mind, and Brain (CCMB) - , Singapore Duration: 16 Apr 2013 → 19 Apr 2013 |
Conference
Conference | 2013 IEEE Symposium on Computational Intelligence, Cognitive Algorithms, Mind, and Brain (CCMB) |
---|---|
Country/Territory | Singapore |
Period | 16/04/13 → 19/04/13 |