Projects per year
Abstract
Stiff, elastic, viscous shear thinning aqueous gels are formed upon dispersion of low weight percent concentrations of cationically modified cellulose nanofibrils (CCNF) in water. CCNF hydrogels produced from cellulose modified with glycidyltrimethylammonium chloride, with degree of substitution (DS) in the range 10.6(3)-23.0(9)%, were characterised using NMR spectroscopy, rheology and small angle neutron scattering (SANS) to probe the fundamental form and dimensions of the CCNF and to reveal interfibrillar interactions leading to gelation. As DS increased CCNF became more rigid as evidenced by longer Kuhn lengths, 18-30 nm, derived from fitting of SANS data to an elliptical cross-section, cylinder model. Furthermore, apparent changes in CCNF cross-section dimensions suggested an "unravelling" of initially twisted fibrils into more flattened ribbon-like forms. Increases in elastic modulus (7.9-62.5 Pa) were detected with increased DS and 1H solution-state NMR T1 relaxation times of the introduced surface -N+(CH3)3 groups were found to be longer in hydrogels with lower DS, reflecting the greater flexibility of the low DS CCNF. This is the first time that such correlation between DS and fibrillar form and stiffness has been reported for these potentially useful rheology modifiers derived from renewable cellulose.
Original language | English |
---|---|
Pages (from-to) | 255-263 |
Number of pages | 9 |
Journal | Soft Matter |
Volume | 14 |
Issue number | 2 |
Early online date | 11 Dec 2017 |
DOIs | |
Publication status | Published - 1 Jan 2018 |
ASJC Scopus subject areas
- General Chemistry
- Condensed Matter Physics
Fingerprint
Dive into the research topics of 'Unravelling cationic cellulose nanofibril hydrogel structure: NMR spectroscopy and small angle neutron scattering analyses'. Together they form a unique fingerprint.Projects
- 1 Finished
-
New Enzymatically Produced Interpenetrating Starch-Cellulose Gels
Edler, K. (PI) & Scott, J. L. (CoI)
Engineering and Physical Sciences Research Council
6/06/16 → 31/01/21
Project: Research council
Equipment
-
Avance 300 MHz Nuclear Magnetic Resonance (NMR) Spectrometer (1South)
Material and Chemical Characterisation (MC2)Facility/equipment: Equipment
-
MC2-Electron Microscopy (EM)
Material and Chemical Characterisation (MC2)Facility/equipment: Technology type
-
MC2- Nuclear Magnetic Resonance (NMR)
Material and Chemical Characterisation (MC2)Facility/equipment: Technology type