Universal Option Variation Using Quadrature Methods

Ari D. Andricopoulos, Martin Widdicks, Peter W. Duck, David Newton

Research output: Contribution to journalArticlepeer-review

91 Citations (SciVal)


This paper proposes and develops a novel, simple, widely applicable numerical approach for option pricing based on quadrature methods. Though in some ways similar to lattice or finite-difference schemes, it possesses exceptional accuracy and speed. Discretely monitored options are valued with only one timestep between observations, and nodes can be perfectly placed in relation to discontinuities. Convergence is improved greatly; in the extrapolated scheme, a doubling of points can reduce error by a factor of 256. Complex problems (e.g., fixed-strike lookback discrete barrier options) can be evaluated accurately and orders of magnitude faster than by existing methods.
Original languageEnglish
Pages (from-to)447-471
Number of pages25
JournalJournal of Financial Economics
Issue number3
Publication statusPublished - 17 Jan 2003


Dive into the research topics of 'Universal Option Variation Using Quadrature Methods'. Together they form a unique fingerprint.

Cite this