TY - GEN
T1 - Uniform Complexity for Text Generation
AU - Imperial, Joseph Marvin
AU - Madabushi, Harish Tayyar
PY - 2023/12/10
Y1 - 2023/12/10
N2 - Large language models (LLMs) have shown promising results in a wide array of generative NLP tasks, such as summarization and machine translation. In the context of narrative generation, however, existing models still do not capture factors that contribute to producing consistent text. For instance, it is logical that a piece of text or a story should be uniformly readable throughout and that this form of complexity should be controllable. As such, if the complexity of an input text prompt is rated first-grade reading level in the Flesch Reading Ease test, then the generated text continuing the plot should also be within this range of complexity. With this in mind, we introduce Uniform Complexity for Text Generation (UCTG), a new benchmark test which raises the challenge of making generative models observe uniform linguistic properties with respect to prompts. We experiment with over 150+ linguistically and cognitively motivated features for evaluating text complexity in humans and generative models. From our results, we find that models such as GPT-2 struggle to preserve the complexity of input prompts used in its generations, even if finetuned with professionally written texts.
AB - Large language models (LLMs) have shown promising results in a wide array of generative NLP tasks, such as summarization and machine translation. In the context of narrative generation, however, existing models still do not capture factors that contribute to producing consistent text. For instance, it is logical that a piece of text or a story should be uniformly readable throughout and that this form of complexity should be controllable. As such, if the complexity of an input text prompt is rated first-grade reading level in the Flesch Reading Ease test, then the generated text continuing the plot should also be within this range of complexity. With this in mind, we introduce Uniform Complexity for Text Generation (UCTG), a new benchmark test which raises the challenge of making generative models observe uniform linguistic properties with respect to prompts. We experiment with over 150+ linguistically and cognitively motivated features for evaluating text complexity in humans and generative models. From our results, we find that models such as GPT-2 struggle to preserve the complexity of input prompts used in its generations, even if finetuned with professionally written texts.
UR - http://www.scopus.com/inward/record.url?scp=85183292384&partnerID=8YFLogxK
M3 - Chapter in a published conference proceeding
AN - SCOPUS:85183292384
T3 - Findings of the Association for Computational Linguistics: EMNLP 2023
SP - 12025
EP - 12046
BT - Findings of the Association for Computational Linguistics
PB - Association for Computational Linguistics (ACL)
T2 - 2023 Findings of the Association for Computational Linguistics: EMNLP 2023
Y2 - 6 December 2023 through 10 December 2023
ER -