Projects per year
Abstract
Cu2GeTe3 (CGT) phase-change material, a promising candidate for advanced fast nonvolatile random-access-memory devices, has a chalcopyritelike structure with sp3 bonding in the crystalline phase; thus, the phase-change (PC) mechanism is considered to be essentially different from that of the standard PC materials (e.g., Ge-Sb-Te) with threefold to sixfold p-like bonding. In order to reveal the PC mechanism of CGT, the electronic structure change due to PC has been investigated by laboratory hard x-ray photoelectron spectroscopy and combined first-principles density-functional theory molecular-dynamics simulations. The valence-band spectra, in both crystalline and amorphous phases, are well simulated by the calculations. An inherent tendency of Te 5s lone-pair formation and an enhanced participation of Cu 3d orbitals in the bonding are found to play dominant roles in the PC mechanism. The electrical conductivity of as-deposited films and its change during the PC process is investigated in connection with valence-band spectral changes near the Fermi level. The results are successfully analyzed, based on a model proposed by Davis and Mott for chalcogenide amorphous semiconductors. The results suggest that robustness of the defect-band states against thermal stress is a key to the practical application of this material for memory devices.
Original language | English |
---|---|
Article number | 195105 |
Journal | Physical Review B |
Volume | 97 |
Issue number | 19 |
Early online date | 3 May 2018 |
DOIs | |
Publication status | Published - 15 May 2018 |
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics
Fingerprint
Dive into the research topics of 'Understanding the fast phase-change mechanism of tetrahedrally bonded Cu2GeTe3: Comprehensive analyses of electronic structure and transport phenomena'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Applying Long-Lived Metastable States in Switchable Functionality via Kinetic Control of Molecular Assembly
Raithby, P. (PI), Burrows, A. (CoI), Lewis, D. (CoI), Marken, F. (CoI), Parker, S. (CoI), Walsh, A. (CoI) & Wilson, C. (CoI)
Engineering and Physical Sciences Research Council
1/11/12 → 30/04/18
Project: Research council