Understanding machine-material interaction for improved design methods

Colin McPherson, Ben Hicks, Chris Berry, Tony Medland, Glen Mullineux

Research output: Chapter in Book/Report/Conference proceedingChapter

Abstract

Market price demands and legislation are forcing fast-moving consumer goods manufacturers to use thinner and lighter weight packaging materials to convey their products to the consumer. In general these thinner, lighter materials, and materials containing high levels of recycled substrate perform less well on the present designs of packaging machinery. This problem is further complicated by the fact that customers are demanding improved operating efficiencies and expect machines to be able to handle an increasing number of product types and pack sizes. The packaging machinery manufacturers are therefore looking to develop machinery that is more flexible and responsive to changes in material properties as well as better matching new materials to current processes and specific machine designs. In order to achieve this, a fundamental understanding of the interaction between machine systems and the packaging materials used on them is required. This paper presents a design methodology which supports the identification and consideration of the machine-material interactions, and the assessment of the impact of these interactions on the process performance and the machine capabilities. From this assessment, a set of design rules for the particular packaging operation and class of packaging material can be generated. These design rules can be used to support the design of responsive packaging machines, or to reverse engineer package design (shape and size) and material specification for improved processibility.
Original languageEnglish
Title of host publicationAdvances in Integrated Design and Manufacturing in Mechanical Engineering
Subtitle of host publicationPart 1
EditorsA Bramley, D Brissaud, D Coutellier, C McMahon
Place of PublicationDordrecht, Netherlands
PublisherSpringer
Pages81-94
Number of pages14
ISBN (Print)9781402034824
DOIs
Publication statusPublished - 2005

Fingerprint Dive into the research topics of 'Understanding machine-material interaction for improved design methods'. Together they form a unique fingerprint.

Cite this