TY - JOUR
T1 - Uncoupling TORC2 from AGC kinases inhibits tumour growth
AU - Cameron, Angus J M
AU - Veeriah, Selvaraju
AU - Marshall, Jacqueline J T
AU - Murray, Elizabeth R
AU - Larijani, Banafshé
AU - Parker, Peter J
PY - 2017/10/17
Y1 - 2017/10/17
N2 - Mammalian target of rapamycin (mTOR) is a central regulator of growth and metabolism. mTOR resides in two distinct multi-protein complexes - mTORC1 and mTORC2 - with distinct upstream regulators and downstream targets. While it is possible to specifically inhibit mTORC1 with rapamycin, or inhibit both mTOR complexes together with ATP pocket directed mTOR kinase inhibitors, it is not possible to assess the specific roles for mTORC2 pharmacologically. To overcome this, we have developed a novel, inducible, dominant negative system for disrupting substrate recruitment to mTORC2. Previously we identified the mTORC2 specific subunit Sin1 as a direct binding partner for AGC kinases Akt and PKC. Sin1 mutants, which retain the ability to bind Rictor and mTOR, but fail to recruit their AGC client kinases, inhibit AKT and PKC priming and block cell growth. In this study, we demonstrate that uncoupling mTORC2 from AGC kinases in DLD1 colon cancer cells inhibits Akt activation and blocks tumour growth in vivo. Further we demonstrate, using time resolved two-site amplified FRET (A-FRET) analysis of xenograft tumours, that inhibition of tumour growth correlates with the degree of mTORC2 uncoupling from its downstream targets, as demonstrated for Akt. These data add weight to the body of evidence that mTORC2 represents a pharmacological target in cancer independently of mTORC1.
AB - Mammalian target of rapamycin (mTOR) is a central regulator of growth and metabolism. mTOR resides in two distinct multi-protein complexes - mTORC1 and mTORC2 - with distinct upstream regulators and downstream targets. While it is possible to specifically inhibit mTORC1 with rapamycin, or inhibit both mTOR complexes together with ATP pocket directed mTOR kinase inhibitors, it is not possible to assess the specific roles for mTORC2 pharmacologically. To overcome this, we have developed a novel, inducible, dominant negative system for disrupting substrate recruitment to mTORC2. Previously we identified the mTORC2 specific subunit Sin1 as a direct binding partner for AGC kinases Akt and PKC. Sin1 mutants, which retain the ability to bind Rictor and mTOR, but fail to recruit their AGC client kinases, inhibit AKT and PKC priming and block cell growth. In this study, we demonstrate that uncoupling mTORC2 from AGC kinases in DLD1 colon cancer cells inhibits Akt activation and blocks tumour growth in vivo. Further we demonstrate, using time resolved two-site amplified FRET (A-FRET) analysis of xenograft tumours, that inhibition of tumour growth correlates with the degree of mTORC2 uncoupling from its downstream targets, as demonstrated for Akt. These data add weight to the body of evidence that mTORC2 represents a pharmacological target in cancer independently of mTORC1.
U2 - 10.18632/oncotarget.20086
DO - 10.18632/oncotarget.20086
M3 - Article
C2 - 29156676
SN - 1949-2553
VL - 8
SP - 84685
EP - 84696
JO - Oncotarget
JF - Oncotarget
IS - 49
ER -