Projects per year
Abstract
Hydrogen oxidation and oxygen reduction are two crucial energy conversion reactions, which are shown to be both strongly affected by the presence of intrinsically microporous polymer coatings on electrodes. Polymers of intrinsic microporosity (PIMs) are known to possess extremely high internal surface area and ability to bind gases under dry conditions. It is shown here that both, hydrogen- and oxygen gas binding into PIMs, also occurs under wet or “triphasic” conditions in aqueous electrolyte environments (when immersed in 0.01 M phosphate buffer at pH 7). For two known PIM materials (PIM-1 and PIM-PY), nanoparticles are formed by an anti-solvent precipitation protocol and then cast as a film onto platinum or glassy carbon electrodes. Voltammetry experiments reveal evidence for hydrogen and oxygen binding. Both, PIM-1 and PIM-PY, locally store hydrogen or oxygen gas at the electrode surface and thereby significantly affect electrocatalytic reactivity. The onset of oxygen reduction on glassy carbon is shifted by 0.15 V in the positive direction.
Original language | English |
---|---|
Pages (from-to) | 252-259 |
Number of pages | 8 |
Journal | ChemElectroChem |
Volume | 6 |
Issue number | 1 |
Early online date | 12 Mar 2018 |
DOIs | |
Publication status | Published - 2 Jan 2019 |
Keywords
- carbon dioxide
- diffusion
- electrocatalysis
- modified electrode
- voltammetry
ASJC Scopus subject areas
- Catalysis
- Electrochemistry
Fingerprint
Dive into the research topics of 'Triphasic Nature of Polymers of Intrinsic Microporosity Induces Storage and Catalysis Effects in Hydrogen and Oxygen Reactivity at Electrode Surfaces'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Applying Long-Lived Metastable States in Switchable Functionality via Kinetic Control of Molecular Assembly
Raithby, P. (PI), Burrows, A. (CoI), Lewis, D. (CoI), Marken, F. (CoI), Parker, S. (CoI), Walsh, A. (CoI) & Wilson, C. (CoI)
Engineering and Physical Sciences Research Council
1/11/12 → 30/04/18
Project: Research council
Profiles
-
Tina Düren
- Department of Chemical Engineering - Head of Department
- Centre for Sustainable Chemical Technologies (CSCT)
- EPSRC Centre for Doctoral Training in Statistical Applied Mathematics (SAMBa)
- Centre for Integrated Materials, Processes & Structures (IMPS) - Centre Director
- Institute of Sustainability and Climate Change
Person: Research & Teaching, Core staff, Affiliate staff