Transparent, Hydrophobic Fluorinated Ethylene Propylene Offers Rapid, Robust, and Irreversible Passive Adsorption of Diagnostic Antibodies for Sensitive Optical Biosensing

Ana I. Barbosa, Augusto Sampaio Barreto, Nuno Reis

Research output: Contribution to journalArticle

Abstract

Current literature data is scarce and somehow contradictory in respect to the suitability of "nonstick" fluoropolymer surfaces for immobilization of biomolecules. We have previously shown empirically that transparent Teflon fluorinated ethylene propylene (FEP) offers rapid and sensitive optical biosensing of clinically relevant biomarkers. This study shows for the first time a comprehensive experimental analysis of passive adsorption of diagnostic IgG antibodies on actual Teflon FEP microfluidic strips. Full equilibrium isotherms and kinetics for passive adsorption were studied and modeled employing a protein titration method using hundreds of multibore microfluidic strips for a range of temperatures, pH, ionic strengths, and inner diameters, using both polyclonal and monoclonal antibody systems. Results were benchmarked against other plastic hydrophobic and glass hydrophilic capillary surfaces. For the first time, it was shown quantitatively that the hydrophobicity of fluoropolymer surfaces encourages the passive adsorption of diagnostic antibodies for biosensing and is insensitive to the temperature of incubation and to ionic buffer strength. The mass of captured antigen increased with increasing antibody surface coverage up to ∼400 ng/cm 2, with an optimal adsorbed antibody activity for 45-69% of full monolayer coverage, matching results of other biosensing surfaces. The equilibrium was reached fast, within 5-10 min, and surprisingly both the kinetics and equilibrium of antibody adsorption were dependent on the inner diameter of microcapillaries. This is a novel and relevant result that will generally impact on the design of miniaturized microfluidic biosensing devices. The antibody surface densities obtained with hydrophobic plastic surfaces were 2- to 4-fold lower than for a hydrophilic, glass surface, however the former presented a monolayered adsorption with a higher level of irreversibility, as shown by the adsorption and desorption rates around 1 order of magnitude smaller than for glass, which is highly desirable for biosensing with surface-coated biomolecules.

Original languageEnglish
Pages (from-to)2780-2790
Number of pages28
JournalACS Applied Biomaterials
Volume2
Issue number7
Early online date22 May 2019
DOIs
Publication statusPublished - 15 Jul 2019

Keywords

  • Teflon FEP
  • adsorption kinetics
  • antibody adsorption
  • biosensing
  • microcapillary film
  • microfluidics

ASJC Scopus subject areas

  • Biomaterials
  • Chemistry(all)
  • Biomedical Engineering
  • Biochemistry, medical

Cite this

Transparent, Hydrophobic Fluorinated Ethylene Propylene Offers Rapid, Robust, and Irreversible Passive Adsorption of Diagnostic Antibodies for Sensitive Optical Biosensing. / Barbosa, Ana I.; Sampaio Barreto, Augusto; Reis, Nuno.

In: ACS Applied Biomaterials, Vol. 2, No. 7, 15.07.2019, p. 2780-2790.

Research output: Contribution to journalArticle

@article{5c50b04693574d929e4cf869ce65a32e,
title = "Transparent, Hydrophobic Fluorinated Ethylene Propylene Offers Rapid, Robust, and Irreversible Passive Adsorption of Diagnostic Antibodies for Sensitive Optical Biosensing",
abstract = "Current literature data is scarce and somehow contradictory in respect to the suitability of {"}nonstick{"} fluoropolymer surfaces for immobilization of biomolecules. We have previously shown empirically that transparent Teflon fluorinated ethylene propylene (FEP) offers rapid and sensitive optical biosensing of clinically relevant biomarkers. This study shows for the first time a comprehensive experimental analysis of passive adsorption of diagnostic IgG antibodies on actual Teflon FEP microfluidic strips. Full equilibrium isotherms and kinetics for passive adsorption were studied and modeled employing a protein titration method using hundreds of multibore microfluidic strips for a range of temperatures, pH, ionic strengths, and inner diameters, using both polyclonal and monoclonal antibody systems. Results were benchmarked against other plastic hydrophobic and glass hydrophilic capillary surfaces. For the first time, it was shown quantitatively that the hydrophobicity of fluoropolymer surfaces encourages the passive adsorption of diagnostic antibodies for biosensing and is insensitive to the temperature of incubation and to ionic buffer strength. The mass of captured antigen increased with increasing antibody surface coverage up to ∼400 ng/cm 2, with an optimal adsorbed antibody activity for 45-69{\%} of full monolayer coverage, matching results of other biosensing surfaces. The equilibrium was reached fast, within 5-10 min, and surprisingly both the kinetics and equilibrium of antibody adsorption were dependent on the inner diameter of microcapillaries. This is a novel and relevant result that will generally impact on the design of miniaturized microfluidic biosensing devices. The antibody surface densities obtained with hydrophobic plastic surfaces were 2- to 4-fold lower than for a hydrophilic, glass surface, however the former presented a monolayered adsorption with a higher level of irreversibility, as shown by the adsorption and desorption rates around 1 order of magnitude smaller than for glass, which is highly desirable for biosensing with surface-coated biomolecules.",
keywords = "Teflon FEP, adsorption kinetics, antibody adsorption, biosensing, microcapillary film, microfluidics",
author = "Barbosa, {Ana I.} and {Sampaio Barreto}, Augusto and Nuno Reis",
year = "2019",
month = "7",
day = "15",
doi = "10.1021/acsabm.9b00214",
language = "English",
volume = "2",
pages = "2780--2790",
journal = "ACS Applied Biomaterials",
issn = "2576-6422",
publisher = "American Chemical Society",
number = "7",

}

TY - JOUR

T1 - Transparent, Hydrophobic Fluorinated Ethylene Propylene Offers Rapid, Robust, and Irreversible Passive Adsorption of Diagnostic Antibodies for Sensitive Optical Biosensing

AU - Barbosa, Ana I.

AU - Sampaio Barreto, Augusto

AU - Reis, Nuno

PY - 2019/7/15

Y1 - 2019/7/15

N2 - Current literature data is scarce and somehow contradictory in respect to the suitability of "nonstick" fluoropolymer surfaces for immobilization of biomolecules. We have previously shown empirically that transparent Teflon fluorinated ethylene propylene (FEP) offers rapid and sensitive optical biosensing of clinically relevant biomarkers. This study shows for the first time a comprehensive experimental analysis of passive adsorption of diagnostic IgG antibodies on actual Teflon FEP microfluidic strips. Full equilibrium isotherms and kinetics for passive adsorption were studied and modeled employing a protein titration method using hundreds of multibore microfluidic strips for a range of temperatures, pH, ionic strengths, and inner diameters, using both polyclonal and monoclonal antibody systems. Results were benchmarked against other plastic hydrophobic and glass hydrophilic capillary surfaces. For the first time, it was shown quantitatively that the hydrophobicity of fluoropolymer surfaces encourages the passive adsorption of diagnostic antibodies for biosensing and is insensitive to the temperature of incubation and to ionic buffer strength. The mass of captured antigen increased with increasing antibody surface coverage up to ∼400 ng/cm 2, with an optimal adsorbed antibody activity for 45-69% of full monolayer coverage, matching results of other biosensing surfaces. The equilibrium was reached fast, within 5-10 min, and surprisingly both the kinetics and equilibrium of antibody adsorption were dependent on the inner diameter of microcapillaries. This is a novel and relevant result that will generally impact on the design of miniaturized microfluidic biosensing devices. The antibody surface densities obtained with hydrophobic plastic surfaces were 2- to 4-fold lower than for a hydrophilic, glass surface, however the former presented a monolayered adsorption with a higher level of irreversibility, as shown by the adsorption and desorption rates around 1 order of magnitude smaller than for glass, which is highly desirable for biosensing with surface-coated biomolecules.

AB - Current literature data is scarce and somehow contradictory in respect to the suitability of "nonstick" fluoropolymer surfaces for immobilization of biomolecules. We have previously shown empirically that transparent Teflon fluorinated ethylene propylene (FEP) offers rapid and sensitive optical biosensing of clinically relevant biomarkers. This study shows for the first time a comprehensive experimental analysis of passive adsorption of diagnostic IgG antibodies on actual Teflon FEP microfluidic strips. Full equilibrium isotherms and kinetics for passive adsorption were studied and modeled employing a protein titration method using hundreds of multibore microfluidic strips for a range of temperatures, pH, ionic strengths, and inner diameters, using both polyclonal and monoclonal antibody systems. Results were benchmarked against other plastic hydrophobic and glass hydrophilic capillary surfaces. For the first time, it was shown quantitatively that the hydrophobicity of fluoropolymer surfaces encourages the passive adsorption of diagnostic antibodies for biosensing and is insensitive to the temperature of incubation and to ionic buffer strength. The mass of captured antigen increased with increasing antibody surface coverage up to ∼400 ng/cm 2, with an optimal adsorbed antibody activity for 45-69% of full monolayer coverage, matching results of other biosensing surfaces. The equilibrium was reached fast, within 5-10 min, and surprisingly both the kinetics and equilibrium of antibody adsorption were dependent on the inner diameter of microcapillaries. This is a novel and relevant result that will generally impact on the design of miniaturized microfluidic biosensing devices. The antibody surface densities obtained with hydrophobic plastic surfaces were 2- to 4-fold lower than for a hydrophilic, glass surface, however the former presented a monolayered adsorption with a higher level of irreversibility, as shown by the adsorption and desorption rates around 1 order of magnitude smaller than for glass, which is highly desirable for biosensing with surface-coated biomolecules.

KW - Teflon FEP

KW - adsorption kinetics

KW - antibody adsorption

KW - biosensing

KW - microcapillary film

KW - microfluidics

UR - http://www.scopus.com/inward/record.url?scp=85067403902&partnerID=8YFLogxK

U2 - 10.1021/acsabm.9b00214

DO - 10.1021/acsabm.9b00214

M3 - Article

VL - 2

SP - 2780

EP - 2790

JO - ACS Applied Biomaterials

JF - ACS Applied Biomaterials

SN - 2576-6422

IS - 7

ER -