Transition from Propagating Polariton Solitons to a Standing Wave Condensate Induced by Interactions

M. Sich, J. K. Chana, O. A. Egorov, H. Sigurdsson, I. A. Shelykh, D. V. Skryabin, P. M. Walker, E. Clarke, B. Royall, M. S. Skolnick, D. N. Krizhanovskii

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

We explore phase transitions of polariton wave packets, first, to a soliton and then to a standing wave polariton condensate in a multimode microwire system, mediated by nonlinear polariton interactions. At low excitation density, we observe ballistic propagation of the multimode polariton wave packets arising from the interference between different transverse modes. With increasing excitation density, the wave packets transform into single-mode bright solitons due to effects of both intermodal and intramodal polariton-polariton scattering. Further increase of the excitation density increases thermalization speed, leading to relaxation of the polariton density from a solitonic spectrum distribution in momentum space down to low momenta, with the resultant formation of a nonequilibrium condensate manifested by a standing wave pattern across the whole sample.

Original languageEnglish
Article number167402
JournalPhysical Review Letters
Volume120
Issue number16
DOIs
Publication statusPublished - 20 Apr 2018

Fingerprint

standing waves
polaritons
condensates
solitary waves
wave packets
interactions
excitation
momentum
ballistics
interference
propagation
scattering

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Cite this

Sich, M., Chana, J. K., Egorov, O. A., Sigurdsson, H., Shelykh, I. A., Skryabin, D. V., ... Krizhanovskii, D. N. (2018). Transition from Propagating Polariton Solitons to a Standing Wave Condensate Induced by Interactions. Physical Review Letters, 120(16), [167402]. https://doi.org/10.1103/PhysRevLett.120.167402

Transition from Propagating Polariton Solitons to a Standing Wave Condensate Induced by Interactions. / Sich, M.; Chana, J. K.; Egorov, O. A.; Sigurdsson, H.; Shelykh, I. A.; Skryabin, D. V.; Walker, P. M.; Clarke, E.; Royall, B.; Skolnick, M. S.; Krizhanovskii, D. N.

In: Physical Review Letters, Vol. 120, No. 16, 167402, 20.04.2018.

Research output: Contribution to journalArticle

Sich, M, Chana, JK, Egorov, OA, Sigurdsson, H, Shelykh, IA, Skryabin, DV, Walker, PM, Clarke, E, Royall, B, Skolnick, MS & Krizhanovskii, DN 2018, 'Transition from Propagating Polariton Solitons to a Standing Wave Condensate Induced by Interactions', Physical Review Letters, vol. 120, no. 16, 167402. https://doi.org/10.1103/PhysRevLett.120.167402
Sich, M. ; Chana, J. K. ; Egorov, O. A. ; Sigurdsson, H. ; Shelykh, I. A. ; Skryabin, D. V. ; Walker, P. M. ; Clarke, E. ; Royall, B. ; Skolnick, M. S. ; Krizhanovskii, D. N. / Transition from Propagating Polariton Solitons to a Standing Wave Condensate Induced by Interactions. In: Physical Review Letters. 2018 ; Vol. 120, No. 16.
@article{e6743d80dee44fd28e6273bb60d22312,
title = "Transition from Propagating Polariton Solitons to a Standing Wave Condensate Induced by Interactions",
abstract = "We explore phase transitions of polariton wave packets, first, to a soliton and then to a standing wave polariton condensate in a multimode microwire system, mediated by nonlinear polariton interactions. At low excitation density, we observe ballistic propagation of the multimode polariton wave packets arising from the interference between different transverse modes. With increasing excitation density, the wave packets transform into single-mode bright solitons due to effects of both intermodal and intramodal polariton-polariton scattering. Further increase of the excitation density increases thermalization speed, leading to relaxation of the polariton density from a solitonic spectrum distribution in momentum space down to low momenta, with the resultant formation of a nonequilibrium condensate manifested by a standing wave pattern across the whole sample.",
author = "M. Sich and Chana, {J. K.} and Egorov, {O. A.} and H. Sigurdsson and Shelykh, {I. A.} and Skryabin, {D. V.} and Walker, {P. M.} and E. Clarke and B. Royall and Skolnick, {M. S.} and Krizhanovskii, {D. N.}",
year = "2018",
month = "4",
day = "20",
doi = "10.1103/PhysRevLett.120.167402",
language = "English",
volume = "120",
journal = "Physical Review Letters",
issn = "0031-9007",
publisher = "American Physical Society",
number = "16",

}

TY - JOUR

T1 - Transition from Propagating Polariton Solitons to a Standing Wave Condensate Induced by Interactions

AU - Sich, M.

AU - Chana, J. K.

AU - Egorov, O. A.

AU - Sigurdsson, H.

AU - Shelykh, I. A.

AU - Skryabin, D. V.

AU - Walker, P. M.

AU - Clarke, E.

AU - Royall, B.

AU - Skolnick, M. S.

AU - Krizhanovskii, D. N.

PY - 2018/4/20

Y1 - 2018/4/20

N2 - We explore phase transitions of polariton wave packets, first, to a soliton and then to a standing wave polariton condensate in a multimode microwire system, mediated by nonlinear polariton interactions. At low excitation density, we observe ballistic propagation of the multimode polariton wave packets arising from the interference between different transverse modes. With increasing excitation density, the wave packets transform into single-mode bright solitons due to effects of both intermodal and intramodal polariton-polariton scattering. Further increase of the excitation density increases thermalization speed, leading to relaxation of the polariton density from a solitonic spectrum distribution in momentum space down to low momenta, with the resultant formation of a nonequilibrium condensate manifested by a standing wave pattern across the whole sample.

AB - We explore phase transitions of polariton wave packets, first, to a soliton and then to a standing wave polariton condensate in a multimode microwire system, mediated by nonlinear polariton interactions. At low excitation density, we observe ballistic propagation of the multimode polariton wave packets arising from the interference between different transverse modes. With increasing excitation density, the wave packets transform into single-mode bright solitons due to effects of both intermodal and intramodal polariton-polariton scattering. Further increase of the excitation density increases thermalization speed, leading to relaxation of the polariton density from a solitonic spectrum distribution in momentum space down to low momenta, with the resultant formation of a nonequilibrium condensate manifested by a standing wave pattern across the whole sample.

UR - http://www.scopus.com/inward/record.url?scp=85045566713&partnerID=8YFLogxK

U2 - 10.1103/PhysRevLett.120.167402

DO - 10.1103/PhysRevLett.120.167402

M3 - Article

VL - 120

JO - Physical Review Letters

JF - Physical Review Letters

SN - 0031-9007

IS - 16

M1 - 167402

ER -