Transcription factor Nrf2 mediates an adaptive response to sulforaphane that protects fibroblasts in vitro against the cytotoxic effects of electrophiles, peroxides and redox-cycling agents

L G Higgins, M O Kelleher, Ian M Eggleston, K Itoh, M Yamamoto, J D Hayes

Research output: Contribution to journalArticle

118 Citations (Scopus)

Abstract

Sulforphane can Stimulate cellular adaptation to redox stressors through transcription factor Nrf2. Using mouse embryonic fibroblasts (MEFs) as a model, we show herein that the normal homeostatic level of glutathione in Nif2(-/-) MEFs was only 20% of that in their wild-type counterparts. Furthermore, the rate of glutathione synthesis following its acute depletion upon treatment with 3 mu mol/l sulforaphane was very substantially lower in Nrf2(-/-) MEFs than in wild-type cells, and the rebound leading to a similar to 1.9-fold increase in glutathione that Occurred 12-24 h after Nrf2(+/+) MEFs were treated with sulforaphane was not observed in Nrf2(-/-) fibroblasts. Wild-type MEFs that had been pre-treated for 24 h with 3 mu mol/l sulforaphane exhibited between 1.4- and 3.2-fold resistance against thiol-reactive electrophiles, including isothiocyanates, alpha,beta-unsaturated carbonyl compounds (e.g. acrolein), aryl halides and alkene epoxides. Pretreatment of Nrf2(+/+) MEFs With sulforaphane also protected against hydroperoxides (e.g. cumene hydroperoxide, CuOOH), free radical-generating Compounds (e.g. menadione), and genotoxic electrophiles (e.g. chlorambucil). By contrast, Nrf2(-/-) MEFs were typically similar to 50% less tolerant of these agents than wildtype fibroblasts, and sulforaphane pre-treatment did not protect the mutant cells against xenobiotics. To test whether Nrf2-mediated up-regulation of glutathione represents the major cytoprotective mechanism Stimulated by sulforaphane, 5 mu mol/l buthionine sulfoximine (BSO) was used to inhibit glutathione synthesis. In Nrf2(+/+) MEFs pre-treated with sulforaphane, BSO diminished intrinsic resistance and abolished inducible resistance to acrolein, CuOOH and chlorambucil, but not menadione. Thus Nrf2-dependent up-regulation of GSH is the principal mechanism by which sulforaphane pre-treatment induced resistance to acrolein, CuOOH and chlorambucil, but not menadione.
Original languageEnglish
Pages (from-to)267-280
Number of pages14
JournalToxicology and Applied Pharmacology
Volume237
Issue number3
Early online date20 Mar 2009
DOIs
Publication statusPublished - 15 Jun 2009

Keywords

  • Glutathione S-transferases
  • Acrolein
  • Glutathione
  • Chlorambucil
  • Cancer chemoprevention
  • Menadione

Fingerprint Dive into the research topics of 'Transcription factor Nrf2 mediates an adaptive response to sulforaphane that protects fibroblasts <em>in vitro</em> against the cytotoxic effects of electrophiles, peroxides and redox-cycling agents'. Together they form a unique fingerprint.

  • Cite this