Abstract
Objective. Transcranial direct current stimulation (tDCS) and user training (UT) are two types of methods to improve myoelectric control performance for amputees. In this study, we compared the independent effect between tDCS and UT, and investigated the combined effect of tDCS and UT. Approach. An online paradigm of simultaneous and proportional control (SPC) based on electromyography (EMG) was adopted. The proposed experiments were conducted on six naïve unilateral trans-radial amputees. The subjects each received three types of 20 min interventions: active tDCS with motor training (tDCS + UT), active tDCS with quiet sitting (tDCS), and sham tDCS with motor training (UT). The interventions were applied at one week intervals in a randomized order. The subjects performed online control of a feedback arrow with two degrees of freedom (DoFs) to accomplish target reaching motor tasks in pre-sessions and post-sessions. We compared the performance, measured by completion rate, completion time, and efficiency coefficient, between pre-sessions and post-sessions. Main results. The results showed that the intervention tDCS + UT and tDCS significantly improved the online SPC performance (i.e. improved the completion rate; reduced the completion time; and improved the efficiency coefficient), while intervention UT did not significantly change the performance. The results also showed that the online SPC performance after intervention tDCS + UT and tDCS was not significantly different, but both were significantly better than that after intervention UT. Significance. tDCS could be an effective intervention to improve the online SPC performance in a short time.
Original language | English |
---|---|
Article number | 046019 |
Journal | Journal of Neural Engineering |
Volume | 14 |
Issue number | 4 |
DOIs | |
Publication status | Published - 13 Jun 2017 |
Keywords
- electromyography (EMG)
- simultaneous and proportional control (SPC)
- trans-radial amputee
- transcranial direct current stimulation (tDCS)
- user training (UT)
ASJC Scopus subject areas
- Biomedical Engineering
- Cellular and Molecular Neuroscience
Fingerprint
Dive into the research topics of 'Transcranial direct current stimulation versus user training on improving online myoelectric control for amputees'. Together they form a unique fingerprint.Profiles
-
Dingguo Zhang
- Department of Electronic & Electrical Engineering - Reader in Robotics Engineering
- UKRI CDT in Accountable, Responsible and Transparent AI
- Centre for Bioengineering & Biomedical Technologies (CBio)
- Bath Institute for the Augmented Human
- IAAPS: Propulsion and Mobility
Person: Research & Teaching, Core staff, Affiliate staff