Towards Tuneable Lignin-Derived Activated Carbons for Energy Storage Applications

Jemma Louise Rowlandson, Valeska Ting, Karen Edler, Mi Tian

Research output: Contribution to conferencePoster

Abstract

Nanoporous carbons offer potential solutions in many areas of energy storage, from supercapacitors to Li-battery materials, and materials for adsorptive storage of gases, such as methane and hydrogen. The performance of these carbon materials is strongly correlated to the size and geometry of their pores. Our research focuses on tuning the porosity of these carbons for different applications, just by adjusting the feedstock. Lignin, an integral part of lignocellulosic biomass, is produced in large quantities by the paper and pulping industry. The wide-spread availability and low cost of lignin makes this a promising feedstock for industrial-scale production of activated carbons. Uniquely, the lignin structure varies depending on the plant species it is isolated from. The structure of four lignins systematically isolated using the same method, but from different feedstocks, was investigated. Despite a similar chemical composition, it became clear that each lignin was composed of different numbers of aromatic units. On lignin carbonisation, only the aromatic backbone remains, thus lignin from different feedstocks is likely to produce carbons with distinct structures. Initial experiments support this possibility, since the lignins exhibited different behaviours on carbonisation. This work shows promise for using selection of the biomass feedstock to tune activated carbons porosity for different applications.

Conference

ConferenceEarly Career Energy Sector Chemists Symposium 2016
CountryUK United Kingdom
CityLondon
Period16/02/1616/02/16

Fingerprint

Lignin
Activated carbon
Energy storage
Feedstocks
Carbon
Carbonization
Biomass
Porosity
Methane
Hydrogen
Tuning
Gases
Availability
Geometry
Chemical analysis

Cite this

Rowlandson, J. L., Ting, V., Edler, K., & Tian, M. (2016). Towards Tuneable Lignin-Derived Activated Carbons for Energy Storage Applications. Poster session presented at Early Career Energy Sector Chemists Symposium 2016, London, UK United Kingdom.

Towards Tuneable Lignin-Derived Activated Carbons for Energy Storage Applications. / Rowlandson, Jemma Louise; Ting, Valeska; Edler, Karen; Tian, Mi.

2016. Poster session presented at Early Career Energy Sector Chemists Symposium 2016, London, UK United Kingdom.

Research output: Contribution to conferencePoster

Rowlandson, JL, Ting, V, Edler, K & Tian, M 2016, 'Towards Tuneable Lignin-Derived Activated Carbons for Energy Storage Applications' Early Career Energy Sector Chemists Symposium 2016, London, UK United Kingdom, 16/02/16 - 16/02/16, .
Rowlandson JL, Ting V, Edler K, Tian M. Towards Tuneable Lignin-Derived Activated Carbons for Energy Storage Applications. 2016. Poster session presented at Early Career Energy Sector Chemists Symposium 2016, London, UK United Kingdom.
Rowlandson, Jemma Louise ; Ting, Valeska ; Edler, Karen ; Tian, Mi. / Towards Tuneable Lignin-Derived Activated Carbons for Energy Storage Applications. Poster session presented at Early Career Energy Sector Chemists Symposium 2016, London, UK United Kingdom.
@conference{f1bf2d54783c4d38a58529325d934e4d,
title = "Towards Tuneable Lignin-Derived Activated Carbons for Energy Storage Applications",
abstract = "Nanoporous carbons offer potential solutions in many areas of energy storage, from supercapacitors to Li-battery materials, and materials for adsorptive storage of gases, such as methane and hydrogen. The performance of these carbon materials is strongly correlated to the size and geometry of their pores. Our research focuses on tuning the porosity of these carbons for different applications, just by adjusting the feedstock. Lignin, an integral part of lignocellulosic biomass, is produced in large quantities by the paper and pulping industry. The wide-spread availability and low cost of lignin makes this a promising feedstock for industrial-scale production of activated carbons. Uniquely, the lignin structure varies depending on the plant species it is isolated from. The structure of four lignins systematically isolated using the same method, but from different feedstocks, was investigated. Despite a similar chemical composition, it became clear that each lignin was composed of different numbers of aromatic units. On lignin carbonisation, only the aromatic backbone remains, thus lignin from different feedstocks is likely to produce carbons with distinct structures. Initial experiments support this possibility, since the lignins exhibited different behaviours on carbonisation. This work shows promise for using selection of the biomass feedstock to tune activated carbons porosity for different applications.",
author = "Rowlandson, {Jemma Louise} and Valeska Ting and Karen Edler and Mi Tian",
year = "2016",
month = "2",
day = "16",
language = "English",
note = "Early Career Energy Sector Chemists Symposium 2016 ; Conference date: 16-02-2016 Through 16-02-2016",

}

TY - CONF

T1 - Towards Tuneable Lignin-Derived Activated Carbons for Energy Storage Applications

AU - Rowlandson, Jemma Louise

AU - Ting, Valeska

AU - Edler, Karen

AU - Tian, Mi

PY - 2016/2/16

Y1 - 2016/2/16

N2 - Nanoporous carbons offer potential solutions in many areas of energy storage, from supercapacitors to Li-battery materials, and materials for adsorptive storage of gases, such as methane and hydrogen. The performance of these carbon materials is strongly correlated to the size and geometry of their pores. Our research focuses on tuning the porosity of these carbons for different applications, just by adjusting the feedstock. Lignin, an integral part of lignocellulosic biomass, is produced in large quantities by the paper and pulping industry. The wide-spread availability and low cost of lignin makes this a promising feedstock for industrial-scale production of activated carbons. Uniquely, the lignin structure varies depending on the plant species it is isolated from. The structure of four lignins systematically isolated using the same method, but from different feedstocks, was investigated. Despite a similar chemical composition, it became clear that each lignin was composed of different numbers of aromatic units. On lignin carbonisation, only the aromatic backbone remains, thus lignin from different feedstocks is likely to produce carbons with distinct structures. Initial experiments support this possibility, since the lignins exhibited different behaviours on carbonisation. This work shows promise for using selection of the biomass feedstock to tune activated carbons porosity for different applications.

AB - Nanoporous carbons offer potential solutions in many areas of energy storage, from supercapacitors to Li-battery materials, and materials for adsorptive storage of gases, such as methane and hydrogen. The performance of these carbon materials is strongly correlated to the size and geometry of their pores. Our research focuses on tuning the porosity of these carbons for different applications, just by adjusting the feedstock. Lignin, an integral part of lignocellulosic biomass, is produced in large quantities by the paper and pulping industry. The wide-spread availability and low cost of lignin makes this a promising feedstock for industrial-scale production of activated carbons. Uniquely, the lignin structure varies depending on the plant species it is isolated from. The structure of four lignins systematically isolated using the same method, but from different feedstocks, was investigated. Despite a similar chemical composition, it became clear that each lignin was composed of different numbers of aromatic units. On lignin carbonisation, only the aromatic backbone remains, thus lignin from different feedstocks is likely to produce carbons with distinct structures. Initial experiments support this possibility, since the lignins exhibited different behaviours on carbonisation. This work shows promise for using selection of the biomass feedstock to tune activated carbons porosity for different applications.

M3 - Poster

ER -