Towards a variational theory of phase transitions involving curvature

Research output: Contribution to journalArticlepeer-review

4 Citations (SciVal)
187 Downloads (Pure)


An anisotropic area functional is often used as a model for the free energy of a crystal surface. For models of faceting, the anisotropy is typically such that the functional becomes nonconvex, and then it may be appropriate to regularize it with an additional term involving curvature. When the weight of the curvature term tends to 0, this gives rise to a singular perturbation problem. The structure of this problem is comparable to the theory of phase transitions studied first by Modica and Mortola. Their ideas are also use- ful in this context, but they have to be combined with adequate geometric tools. In particular, a variant of the theory of curvature varifolds, intro- duced by Hutchinson, is used in this paper. This allows an analysis of the asymptotic behaviour of the energy functionals.
Original languageEnglish
Pages (from-to)839-865
Number of pages27
JournalProceedings of the Royal Society of Edinburgh Section A - Mathematics
Issue number4
Early online date9 Aug 2012
Publication statusPublished - Aug 2012


Dive into the research topics of 'Towards a variational theory of phase transitions involving curvature'. Together they form a unique fingerprint.

Cite this