Thermochemical and kinetic aspects of the sulfurization of Cu-Sb and Cu-Bi thin films

Diego Colombara, Laurence M Peter, Keith D Rogers, Kyle Hutchings

Research output: Contribution to journalArticlepeer-review

30 Citations (Scopus)
175 Downloads (Pure)

Abstract

CuSbS2 and Cu3BiS3 are being investigated as part of a search for new absorber materials for photovoltaic devices. Thin films of these chalcogenides were produced by conversion of stacked and co-electroplated metal precursor layers in the presence of elemental sulfur vapour. Ex-situ XRD and SEM/EDS analyses of the processed samples were employed to study the reaction sequence with the aim of achieving compact layer morphologies. A new "Time-Temperature-Reaction" (TTR) diagram and modified Pilling-Bedworth coefficients have been introduced for the description and interpretation of the reaction kinetics. For equal processing times, the minimum temperature required for CuSbS2 to appear is substantially lower than for Cu3BiS3, suggesting that interdiffusion across the interfaces between the binary sulfides is a key step in the formation of the ternary compounds. The effects of the heating rate and sulfur partial pressure on the phase evolution as well as the potential losses of Sb and Bi during the processes have been investigated experimentally and the results related to the equilibrium pressure diagrams obtained via thermochemical computation. 2011 Elsevier Inc. All rights reserved.
Original languageEnglish
Pages (from-to)36-46
Number of pages11
JournalJournal of Solid State Chemistry
Volume186
DOIs
Publication statusPublished - Feb 2012

Fingerprint Dive into the research topics of 'Thermochemical and kinetic aspects of the sulfurization of Cu-Sb and Cu-Bi thin films'. Together they form a unique fingerprint.

Cite this