Theory of unsupported, steady-state, Nernstian, three-ion, twin-electrode, voltammetry: the special case of dual concentration polarization

Keith B. Oldham, Frank Marken, Jan C. Myland

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

Steady-state voltammetry is easily attained in narrow cells. Here we develop an exact mathematical description of one of the simplest instances, in which a redox pair is present, but without supporting electrolyte. The Nernstian oxidation that depolarizes the anode is partnered at the nearby cathode by the converse reduction. The resulting voltammogram is sigmoidal in overall shape but, generally, no explicit analytic expression describes the current-potential relationship, or even the height of the limiting-current plateau. Such limiting currents arise either by exhaustive oxidation of one member of the redox pair at the anode or by exhaustive cathodic reduction of the other member. For a critical composition, which this study identifies, both exhaustions occur concurrently. The ionic strength plays a paramount role in unravelling the conditions during the experiment. Although no direct analytical application of this “closed” experiment suggests itself, there are implications of the theory for microgap cells and electroanalytical methods in “open” configurations, as well as separatory possibilities.

Original languageEnglish
Pages (from-to)3083-3095
Number of pages13
JournalJournal of Solid State Electrochemistry
Volume20
Issue number11
DOIs
Publication statusPublished - Nov 2016

Keywords

  • Absence of supporting electrolyte
  • Concentration polarization
  • Dual polarization
  • Joint diffusion-migration transport
  • Limiting currents
  • Microcells
  • Microtrench electrodes
  • Steady-state voltammetry

Fingerprint Dive into the research topics of 'Theory of unsupported, steady-state, Nernstian, three-ion, twin-electrode, voltammetry: the special case of dual concentration polarization'. Together they form a unique fingerprint.

  • Cite this