Theoretical and Experimental Studies of a Digital Flow Booster Operating at High Pressures and Flow Rates

Chenggang Yuan, Vinrea Lim Mao Lung, Andrew Plummer, Min Pan

Research output: Contribution to journalArticlepeer-review

6 Citations (SciVal)

Abstract

The switched inertance hydraulic converter (SIHC) is a new technology providing an alternative to conventional proportional or servo-valve-controlled systems in the area of fluid power. SIHCs can adjust or control flow and pressure by means of using digital control signals that do not rely on throttling the flow and dissipation of power, and provide hydraulic systems with high-energy efficiency, flexible control, and insensitivity to contamination. In this article, the analytical models of an SIHC in a three-port flow-booster configuration were used and validated at high operating pressure, with the low-and high-pressure supplies of 30 and 90 bar and a high delivery flow rate of 21 L/min. The system dynamics, flow responses, and power consumption were investigated and theoretically and experimentally validated. Results were compared to previous results achieved using low operating pressures, where low-and high-pressure supplies were 20 and 30 bar, and the delivery flow rate was 7 L/min. We concluded that the analytical models could effectively predict SIHC performance, and higher operating pressures and flow rates could result in system uncertainties that need to be understood well. As high operating pressure or flow rate is a common requirement in hydraulic systems, this constitutes an important contribution to the development of newly switched inertance hydraulic converters and the improvement of fluidpower energy efficiency.

Original languageEnglish
Article number211
JournalProcesses
Volume8
Issue number2
DOIs
Publication statusPublished - 10 Feb 2020

Fingerprint

Dive into the research topics of 'Theoretical and Experimental Studies of a Digital Flow Booster Operating at High Pressures and Flow Rates'. Together they form a unique fingerprint.

Cite this