TY - JOUR
T1 - The role of photon energy in free charge generation in bulk heterojunction solar cells
AU - Di Nuzzo, D.
AU - Koster, L.J.A.
AU - Gevaerts, V.S.
AU - Meskers, S.C.J.
AU - Janssen, R.A.J.
PY - 2014/12/29
Y1 - 2014/12/29
N2 - To determine the role of photon energy on charge generation in bulk heterojunction solar cells, the bias voltage dependence of photocurrent for excitation with photon energies below and above the optical band gap is investigated in two structurally related polymer solar cells. Charges generated in (poly[2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b'']dithiophene)-alt-4,7-(2,1,3-benzothia-diazole)] (C-PCPDTBT):[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) solar cells via excitation of the low-energy charge transfer (CT) state, situated below the optical band gap, need more voltage to be extracted than charges generated with excitation above the optical band gap. This indicates a lower effective binding energy of the photogenerated electrons and holes when the excitation is above the optical band gap than when excitation is to the bottom of the CT state. In blends of PCBM with the silicon-analogue, poly[(4,4-bis(2-ethylhexyl)dithieno[3,2-b:2',3'-d]silole)-2,6-diyl-alt-(2,1,3-benzothiadiazole)-4,7-diyl] (Si-PCPDTBT), there is no effect of the photon energy on the electric field dependence of the dissociation efficiency of the CT state. C-PCPDTBT and Si-PCPDTBT have very similar electronic properties, but their blends with PCBM differ in the nanoscale phase separation. The morphology is coarser and more crystalline in Si-PCPDTBT:PCBM blends. The results demonstrate that the nanomorphological properties of the bulk heterojunction are important for determining the effective binding energy in the generation of free charges at the heterojunction.
AB - To determine the role of photon energy on charge generation in bulk heterojunction solar cells, the bias voltage dependence of photocurrent for excitation with photon energies below and above the optical band gap is investigated in two structurally related polymer solar cells. Charges generated in (poly[2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b'']dithiophene)-alt-4,7-(2,1,3-benzothia-diazole)] (C-PCPDTBT):[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) solar cells via excitation of the low-energy charge transfer (CT) state, situated below the optical band gap, need more voltage to be extracted than charges generated with excitation above the optical band gap. This indicates a lower effective binding energy of the photogenerated electrons and holes when the excitation is above the optical band gap than when excitation is to the bottom of the CT state. In blends of PCBM with the silicon-analogue, poly[(4,4-bis(2-ethylhexyl)dithieno[3,2-b:2',3'-d]silole)-2,6-diyl-alt-(2,1,3-benzothiadiazole)-4,7-diyl] (Si-PCPDTBT), there is no effect of the photon energy on the electric field dependence of the dissociation efficiency of the CT state. C-PCPDTBT and Si-PCPDTBT have very similar electronic properties, but their blends with PCBM differ in the nanoscale phase separation. The morphology is coarser and more crystalline in Si-PCPDTBT:PCBM blends. The results demonstrate that the nanomorphological properties of the bulk heterojunction are important for determining the effective binding energy in the generation of free charges at the heterojunction.
UR - http://www.scopus.com/inward/record.url?scp=84905322260&partnerID=8YFLogxK
UR - http://dx.doi.org/10.1002/aenm.201400416
U2 - 10.1002/aenm.201400416
DO - 10.1002/aenm.201400416
M3 - Article
SN - 1614-6832
VL - 4
JO - Advanced Energy Materials
JF - Advanced Energy Materials
IS - 18
ER -