The potential of (waste)water as energy carrier: Energy Conversion and Management

J. Frijns, J. Hofman, M. Nederlof

Research output: Contribution to journalArticlepeer-review

193 Citations (SciVal)


Next to energy efficiency improvements in the water sector, there is a need for new concepts in which water is viewed as a carrier of energy. Municipal wastewater is a potential source of chemical energy, i.e. organic carbon that can be recovered as biogas in sludge digestion. The recovery of chemical energy can be maximised by up-concentration of organic carbon and maximised sludge digestion or by source separation and anaerobic treatment. Even more so, domestic wastewater is a source of thermal energy. Through warm water conservation and heat recovery, for example with shower heat exchangers, substantial amounts of energy can be saved and recovered from the water cycle. Water can also be an important renewable energy source, i.e. as underground thermal energy storage. These systems are developing rapidly in the Netherlands and their energy potential is large.
Original languageEnglish
Pages (from-to)357-363
Number of pages7
JournalEnergy Conversion and Management
Publication statusPublished - 2013

Bibliographical note

Cited By :13

Export Date: 23 March 2015


Correspondence Address: Frijns, J.; KWR Watercycle Research Institute, P.O. Box 1072, 3430 BB Nieuwegein, Netherlands; email: [email protected]

References: Zakkour, P.D., Gaterell, M.R., Griffin, P., Gochin, R.J., Lester, J.N., Developing a sustainable energy strategy for a water utility. Part I: A review of the UK legislative framework (2002) J Environ Manage, 66 (2), pp. 105-114; Hoibye, L., Clauson-Kaas, J., Wenzel, H., Larsen, H., Jacobsen, B., Dalgaard, O., Sustainability assessment of advanced wastewater treatment technologies (2008) Water Sci Technol, 58 (5), pp. 963-968; Zwolsman, G.J.J., Van Den Berg, G.A., Frijns, J., Adaptive strategies for drinking water production in the Netherlands (2009) TECHNEAU: Safe Drinking Water from Source to Tap, State-of-art and Perspectives, pp. 405-418. , Th. van den Hoven, C. Kazner, IWA Publishing London; Frijns, J., Mulder, M., Roorda, J., Climate footprint and mitigation measures in the Dutch water sector (2009) Climate Change and Water, International Perspectives on Mitigation and Adaptation, pp. 73-80. , J. Smith, C. Howe, J. Henderson, IWA Publishing London and AWWA, Denver; Post, J.W., Hamelers, H.V.M., Buisman, C.J.N., Energy recovery from controlled mixing salt and freshwater with a reverse electrodialysis system (2008) Environ Sci Technol, 42 (15), pp. 5785-5790; Fernandes, B.S., Peixoto, G., Albrecht, F.R., Saavedra Del Aguila, N.K., Zaiat, M., Potential to produce biohydrogen from various wastewaters (2010) Energy Sustain Dev, 14 (2), pp. 143-148; Verstraete, W., Van De Caveye, P., Diamantis, V., Maximum use of resources present in domestic "used water" (2009) Bioresour Technol, 100 (23), pp. 5537-5545; El-Fadel, M., Massoud, M., Methane emissions from wastewater management (2001) Environ Pollut, 114 (2), pp. 177-185; Greenfield, P.F., Batstone, D.J., Anaerobic digestion: Impact of future greenhouse gases mitigation policies on methane generation and usage (2005) Water Sci Technol, 52 (12), pp. 39-47; Cornelissen, E.R., Harmsen, D., De Korte, K.F., Ruiken, C.J., Qin, J.J., Oo, H., Membrane fouling and process performance of forward osmosis membranes on activated sludge (2008) J Membr Sci, 319 (12), pp. 158-168; Liu, H., Yang, C., Pu, W., Zhang, J., Formation mechanism and structure of dynamic membrane in the dynamic membrane bioreactor (2009) Chem Eng J, 148 (23), pp. 290-295; Wett, B., Solved upscaling problems for implementing deammonification of rejection water (2006) Water Sci Technol, 53 (12), pp. 121-128; Roorda, J.H., Koetse, E., Kunst, J., Buunen-Van Bergen, A., Mels, A., Bisschops, I., Modern sanitation for the developed world: An example for new areas Proceedings IWA Sanitation Challenge Conference, , IWA, Wageningen; 19-20 May 2008; Meulman, B., Zeeman, G., Buisman, C.N.J., Treatment of concentrated black water on pilot scale: Options and challenges Proceedings IWA Sanitation Challenge Conference, , IWA, Wageningen; 19-20 May 2008; Zeeman, G., Kujawa, K., De Mes, T., Hernandez, L., De Graaff, M., Abu-Ghunmi, L., Anaerobic treatment as a core technology for energy, nutrients and water recovery from source-separated, domestic waste (water) (2008) Water Sci Technol, 57 (8), pp. 1207-1212; Schwarzenbeck, N., Bomball, E., Pfeiffer, W., Can a wastewater treatment plant be a powerplant? A case study (2008) Water Sci Technol, 57 (10), pp. 1555-1561; Appels, J., Baeyens, J., Degrève, J., Dewil, R., Principles and potential of the anaerobic digestion of waste-activated sludge (2008) Prog Energy Combust Sci, 34 (6), pp. 755-781; Korving, L., Slib = Energie? (Sludge = Energy?) Conference Proceedings de Afvalwaterzuivering Als Energiefabriek, , Waternetwerk, Lelystad; 13 February 2009; (2005) STOWA, Slibketenstudie - Onderzoek Naar de Energie - En Kostenaspecten in de Water - En Slibketen (Sludge Cycle Study - Research on the Energy and Cost Aspects of the Water- And Sludge Cycle), , Report STOWA/2005-26, STOWA, Utrecht; Nederlof, M.M., Frijns, J., Zero impact water use in the built environment (2010) Towards 0-impact Buildings and Built Environments, pp. 199-208. , J. Kimman, C. Ravesloot, R. Rovers, Techne Press Amsterdam; Ejm, B., Van Osch, A.M., Hogeveen, R., Mudde, C., Thermal energy from drinking water and cost benefit analysis for an entire city Proceedings International Water Week, , Amsterdam; 31 October-4 November 2011; (2006) SenterNovem, Watergebruik in Woningen en Warmteterugwinning Uit Huishoudelijk Afvalwater (Water Use in Houses and Heat Recovery from Domestic Wastewater), , Report of TU Delft and Cauberg Huygen, SenterNovem, Utrecht; Meggers, F., Leibundgut, H., The potential of wastewater heat and exergy: Decentralized high-temperature recovery with a heat pump (2011) Energy Build, 43 (4), pp. 879-886; Wanner, O., Panagiotidis, V., Clavadetscher, P., Siegrist, H., Effect of heat recovery from raw wastewater on nitrification and nitrogen removal in activated sludge plants (2005) Water Res, 39 (19), pp. 4725-4734; Hoek Van Der, J.P., Energy from the water cycle: A promising combination to operate climate neutral (2011) Water Practice Technol, 6 (2); De, G.R., Van De Ven, F., Miltenburg, I., Van Ee, B., Van De Winkel, L., Van Wijk, G., Exploring the technical and economic feasibility of using the urban water system as a sustainable energy source (2008) Thermal Sci, 12 (4), pp. 35-50; Bonte, M., Van Den Berg, G., Boukes, H., Dammers, P., Jennekens, O., Van De Moot, N., Hoe Combineren we Drinkwater met Bodemenergiesystemen? (How do we combine drinking water with underground thermal energy storage?) (2009) Report BTO 2009.030, , KWR Watercycle Research Institute, Nieuwegein; Bonte, M., Stuyfzand, P.J., Hulsmann, A., Van Beelen, P., Underground thermal energy storage: Environmental risks and policy developments in the Netherlands and European Union (2011) Ecol Soc, 16 (1), pp. 22-36


  • (Waste)Water
  • Biogas
  • Energy generation and recovery
  • Heat
  • Organic carbon
  • Underground thermal energy
  • Anaerobic treatments
  • Chemical energy
  • Domestic wastewater
  • Energy carriers
  • Energy efficiency improvements
  • Energy generations
  • Municipal wastewaters
  • Netherlands
  • Potential sources
  • Renewable energy source
  • Water cycle
  • Water sector
  • Energy efficiency
  • Heat storage
  • Renewable energy resources
  • Sludge digestion
  • Waste heat
  • Water conservation
  • Water supply
  • Recovery


Dive into the research topics of 'The potential of (waste)water as energy carrier: Energy Conversion and Management'. Together they form a unique fingerprint.

Cite this