The persistence of a proxy for cooking emissions in megacities: A kinetic study of the ozonolysis of self-Assembled films by simultaneous small and wide angle X-ray scattering (SAXS/WAXS) and Raman microscopy

Adam Milsom, Adam M. Squires, Ben Woden, Nicholas J. Terrill, Andrew D. Ward, Christian Pfrang

Research output: Contribution to journalArticlepeer-review

Abstract

Cooking emissions account for a significant proportion of the organic aerosols emitted into the urban environment and high pollution events have been linked to an increased organic content on urban particulate matter surfaces. We present a kinetic study on surface coatings of self-Assembled (semi-solid) oleic acid-sodium oleate cooking aerosol proxies undergoing ozonolysis. We found clear film thickness-dependent kinetic behaviour and measured the effect of the organic phase on the kinetics for this system. In addition to the thickness-dependent kinetics, we show that significant fractions of unreacted proxy remain after extensive ozone exposure and that this effect scales approximately linearly with film thickness, suggesting that a late-stage inert reaction product may form and inhibit reaction progress-effectively building up an inert crust. We determine this by using a range of simultaneous analytical techniques; most notably Small-Angle X-ray Scattering (SAXS) has been used for the first time to measure the reaction kinetics of films of a wide range of thicknesses from ca. 0.59 to 73 μm with films <10 μm thick being of potential atmospheric relevance. These observations have implications for the evolution of particulate matter in the urban environment, potentially extending the atmospheric lifetimes of harmful aerosol components and affecting the local urban air quality and climate. This journal is

Original languageEnglish
Pages (from-to)364-381
Number of pages18
JournalFaraday Discussions
Volume226
Early online date7 Sep 2020
DOIs
Publication statusPublished - 1 Mar 2021

ASJC Scopus subject areas

  • Physical and Theoretical Chemistry

Cite this