The oxidative corrosion of carbide inclusions at the surface of uranium metal during exposure to water vapour

T B Scott, J R Petherbridge, N J Harker, Richard J Ball, P J Heard, J Glascott, G C Allen

Research output: Contribution to journalArticle

15 Citations (Scopus)

Abstract

The reaction between uranium and water vapour has been well investigated, however discrepancies exist between the described kinetic laws, pressure dependence of the reaction rate constant and activation energies. Here this problem is looked at by examining the influence of impurities in the form of carbide inclusions on the reaction. Samples of uranium containing 600 ppm carbon were analysed during and after exposure to water vapour at 19 mbar pressure, in an environmental scanning electron microscope (ESEM) system. After water exposure, samples were analysed using secondary ion mass spectrometry (SIMS), focused ion beam (FIB) imaging and sectioning and transmission electron microscopy (TEM) with X-ray diffraction (micro-XRD). The results of the current study indicate that carbide particles on the surface of uranium readily react with water vapour to form voluminous UO3·xH2O growths at rates significantly faster than that of the metal. The observation may also have implications for previous experimental studies of uranium–water interactions, where the presence of differing levels of undetected carbide may partly account for the discrepancies observed between datasets.
Original languageEnglish
Pages (from-to)115-123
Number of pages9
JournalJournal of Hazardous Materials
Volume195
DOIs
Publication statusPublished - 2011

Fingerprint Dive into the research topics of 'The oxidative corrosion of carbide inclusions at the surface of uranium metal during exposure to water vapour'. Together they form a unique fingerprint.

  • Cite this