Abstract
Piezoelectricity describes interconversion between electrical charge and mechanical strain. As expected for lattice ions displaced in an electric field, the proportionality constant is positive for all piezoelectric materials. The exceptions are poly(vinylidene fluoride) (PVDF) and its copolymers with trifluoroethylene (P(VDF-TrFE)), which exhibit a negative longitudinal piezoelectric coefficient. Reported explanations exclusively consider contraction with applied electric field of either the crystalline or the amorphous part of these semi-crystalline polymers. To distinguish between these conflicting interpretations, we have performed in situ dynamic X-ray diffraction measurements on P(VDF-TrFE) capacitors. We find that the piezoelectric effect is dominated by the change in lattice constant but, surprisingly, it cannot be accounted for by the polarization-biased electrostrictive contribution of the crystalline part alone. Our quantitative analysis shows that an additional contribution is operative, which we argue is due to an electromechanical coupling between the intermixed crystalline lamellae and amorphous regions. Our findings tie the counterintuitive negative piezoelectric response of PVDF and its copolymers to the dynamics of their composite microstructure.
Original language | English |
---|---|
Pages (from-to) | 78-84 |
Number of pages | 7 |
Journal | Nature Materials |
Volume | 15 |
Issue number | 1 |
DOIs | |
Publication status | Published - 1 Jan 2016 |
Funding
We gratefully acknowledge P. Groen from the Holst Centre, TNO, The Netherlands, for stimulating discussions on inorganic piezoelectrics and ferroelectrics. We are indebted to H. Wondergem, Philips Research, Eindhoven, The Netherlands for X-ray analysis of P(VDF-TrFE) films and to G. Glasser from the Max Plank Institute for Polymer Research, Mainz, Germany, for the SEM micrographs. We acknowledge H. Lemke, currently at the SLAC National Accelerator Laboratory, for his contributions, the beamline scientists A. Beerlink and O. Seeck, as well as the excellent technical support received at P08 at PETRA III, Hamburg. We acknowledge financial support from the Zernike Institute for Advanced Materials, by KAU from project 71-100-35-HiCi, by the EC under FP7 contract no. 212311, ONE-P and by the Max Planck Institute for Polymer Research. K.S.K., T.B.v.D., Y.G. and M.M.N. acknowledge support from DANSCATT. T.B.v.D. and M.M.N. acknowledge support from the ReLiable project (Project No. 11-116792) funded by the Danish Council for Strategic Research Programme Commission on Sustainable Energy and Environment. K.A. acknowledges the Alexander von Humboldt Foundation for the funding provided in the framework of the Sofja Kovalevskaja Award endowed by the Federal Ministry of Education and Research, Germany. D.D. acknowledges support from the Swiss National Science Foundation (No. 200021-159603).
ASJC Scopus subject areas
- General Chemistry
- General Materials Science
- Condensed Matter Physics
- Mechanics of Materials
- Mechanical Engineering