TY - JOUR
T1 - The impact of reducing car weight on global emissions
T2 - the future fleet in Great Britain
AU - Cabrera Serrenho, Andre
AU - Norman, Jonathan B.
AU - Allwood, Julian M.
PY - 2017/6/13
Y1 - 2017/6/13
N2 - Current European policies define targets for future direct emissions of new car sales that foster a fast transition to electric drivetrain technologies. However, these targets do not consider the emissions produced in electricity generation and material production, and therefore fail to incentivise car manufacturers to consider the benefits of vehicle weight reduction. In this paper, we examine the potential benefits of limiting the average weight and altering the material composition of new cars in terms of global greenhouse gas emissions produced during the use phase, electricity generation and material production. We anticipate the emissions savings for the future car fleet in Great Britain until 2050 for various alternative futures, using a dynamic material flow analysis of ferrous metals and aluminium, and considering an evolving demand for car use. The results suggest that fostering vehicle weight reduction could produce greater cumulative emissions savings by 2050 than those obtained by incentivising a fast transition to electric drivetrains, unless there is an extreme decarbonization of the electricity grid. Savings promoted by weight reduction are immediate and do not depend on the pace of decarbonization of the electricity grid. Weight reduction may produce the greatest savings when mild steel in the car body is replaced with high-strength steel.
AB - Current European policies define targets for future direct emissions of new car sales that foster a fast transition to electric drivetrain technologies. However, these targets do not consider the emissions produced in electricity generation and material production, and therefore fail to incentivise car manufacturers to consider the benefits of vehicle weight reduction. In this paper, we examine the potential benefits of limiting the average weight and altering the material composition of new cars in terms of global greenhouse gas emissions produced during the use phase, electricity generation and material production. We anticipate the emissions savings for the future car fleet in Great Britain until 2050 for various alternative futures, using a dynamic material flow analysis of ferrous metals and aluminium, and considering an evolving demand for car use. The results suggest that fostering vehicle weight reduction could produce greater cumulative emissions savings by 2050 than those obtained by incentivising a fast transition to electric drivetrains, unless there is an extreme decarbonization of the electricity grid. Savings promoted by weight reduction are immediate and do not depend on the pace of decarbonization of the electricity grid. Weight reduction may produce the greatest savings when mild steel in the car body is replaced with high-strength steel.
UR - http://dx.doi.org/10.1098/rsta.2016.0364
UR - http://dx.doi.org/10.1098/rsta.2016.0364
U2 - 10.1098/rsta.2016.0364
DO - 10.1098/rsta.2016.0364
M3 - Special issue
VL - 375
JO - Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
JF - Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
IS - 2095
M1 - 20160364
ER -