Abstract

In this short note, we determine the spectrum of the Heisenberg oscillator which is the operator defined as L+|x|2+|y|2 on the Heisenberg group H1 = Rx, y 2 × R where L stands for the positive sublaplacian.

Original languageEnglish
Pages (from-to)181-191
Number of pages11
JournalBulletin of Mathematical Sciences
Volume2
Issue number1
DOIs
Publication statusPublished - 1 Jan 2012

Fingerprint

Sub-Laplacian
Heisenberg Group
Operator

Keywords

  • Harmonic oscillator
  • Nilpotent Lie groups
  • Representation of nilpotent Lie groups

ASJC Scopus subject areas

  • Mathematics(all)

Cite this

The Heisenberg oscillator. / Fischer, Véronique.

In: Bulletin of Mathematical Sciences, Vol. 2, No. 1, 01.01.2012, p. 181-191.

Research output: Contribution to journalArticle

@article{8b1f2a6cb33f456ca1197c8298e77a6e,
title = "The Heisenberg oscillator",
abstract = "In this short note, we determine the spectrum of the Heisenberg oscillator which is the operator defined as L+|x|2+|y|2 on the Heisenberg group H1 = Rx, y 2 × R where L stands for the positive sublaplacian.",
keywords = "Harmonic oscillator, Nilpotent Lie groups, Representation of nilpotent Lie groups",
author = "V{\'e}ronique Fischer",
year = "2012",
month = "1",
day = "1",
doi = "10.1007/s13373-012-0021-z",
language = "English",
volume = "2",
pages = "181--191",
journal = "Bulletin of Mathematical Sciences",
issn = "1664-3607",
publisher = "Springer International Publishing",
number = "1",

}

TY - JOUR

T1 - The Heisenberg oscillator

AU - Fischer, Véronique

PY - 2012/1/1

Y1 - 2012/1/1

N2 - In this short note, we determine the spectrum of the Heisenberg oscillator which is the operator defined as L+|x|2+|y|2 on the Heisenberg group H1 = Rx, y 2 × R where L stands for the positive sublaplacian.

AB - In this short note, we determine the spectrum of the Heisenberg oscillator which is the operator defined as L+|x|2+|y|2 on the Heisenberg group H1 = Rx, y 2 × R where L stands for the positive sublaplacian.

KW - Harmonic oscillator

KW - Nilpotent Lie groups

KW - Representation of nilpotent Lie groups

UR - http://www.scopus.com/inward/record.url?scp=84942237401&partnerID=8YFLogxK

U2 - 10.1007/s13373-012-0021-z

DO - 10.1007/s13373-012-0021-z

M3 - Article

VL - 2

SP - 181

EP - 191

JO - Bulletin of Mathematical Sciences

JF - Bulletin of Mathematical Sciences

SN - 1664-3607

IS - 1

ER -