TY - JOUR
T1 - The enzymes of human diphosphoinositol polyphosphate metabolism
AU - Thomas, Mark P.
AU - Potter, Barry V. L.
PY - 2014/1
Y1 - 2014/1
N2 - Diphospho-myo-inositol polyphosphates have many roles to play, including roles in apoptosis, vesicle trafficking, the response of cells to stress, the regulation of telomere length and DNA damage repair, and inhibition of the cyclin-dependent kinase Pho85 system that monitors phosphate levels. This review focuses on the three classes of enzymes involved in the metabolism of these compounds: inositol hexakisphosphate kinases, inositol hexakisphosphate and diphosphoinositol-pentakisphosphate kinases and diphosphoinositol polyphosphate phosphohydrolases. However, these enzymes have roles beyond being mere catalysts, and their interactions with other proteins have cellular consequences. Through their interactions, the three inositol hexakisphosphate kinases have roles in exocytosis, diabetes, the response to infection, and apoptosis. The two inositol hexakisphosphate and diphosphoinositol-pentakisphosphate kinases influence the cellular response to phosphatidylinositol (3,4,5)-trisphosphate and the migration of pleckstrin homology domain-containing proteins to the plasma membrane. The five diphosphoinositol polyphosphate phosphohydrolases interact with ribosomal proteins and transcription factors, as well as proteins involved in membrane trafficking, exocytosis, ubiquitination and the proteasomal degradation of target proteins. Possible directions for future research aiming to determine the roles of these enzymes are highlighted.
AB - Diphospho-myo-inositol polyphosphates have many roles to play, including roles in apoptosis, vesicle trafficking, the response of cells to stress, the regulation of telomere length and DNA damage repair, and inhibition of the cyclin-dependent kinase Pho85 system that monitors phosphate levels. This review focuses on the three classes of enzymes involved in the metabolism of these compounds: inositol hexakisphosphate kinases, inositol hexakisphosphate and diphosphoinositol-pentakisphosphate kinases and diphosphoinositol polyphosphate phosphohydrolases. However, these enzymes have roles beyond being mere catalysts, and their interactions with other proteins have cellular consequences. Through their interactions, the three inositol hexakisphosphate kinases have roles in exocytosis, diabetes, the response to infection, and apoptosis. The two inositol hexakisphosphate and diphosphoinositol-pentakisphosphate kinases influence the cellular response to phosphatidylinositol (3,4,5)-trisphosphate and the migration of pleckstrin homology domain-containing proteins to the plasma membrane. The five diphosphoinositol polyphosphate phosphohydrolases interact with ribosomal proteins and transcription factors, as well as proteins involved in membrane trafficking, exocytosis, ubiquitination and the proteasomal degradation of target proteins. Possible directions for future research aiming to determine the roles of these enzymes are highlighted.
UR - http://www.scopus.com/inward/record.url?scp=84891827868&partnerID=8YFLogxK
UR - http://dx.doi.org/10.1111/febs.12575
U2 - 10.1111/febs.12575
DO - 10.1111/febs.12575
M3 - Article
SN - 1742-464X
VL - 281
SP - 14
EP - 33
JO - FEBS Journal
JF - FEBS Journal
IS - 1
ER -