Projects per year
Abstract
Replacing lithium ions with sodium ions as the charge carriers in rechargeable batteries can induce noticeable differences in the electrochemical storage mechanisms of electrode materials. Many material parameters, such as particle size, morphology, and the presence of defects, are known to further affect the storage mechanism. Here, we report an investigation of how the introduction of titanium vacancies into anatase TiO 2 affects the sodium storage mechanism. From pair distribution function analysis, we observe that sodium ions are inserted into titanium vacancies at the early stage of the discharge process. This is supported by density functional theory calculations, which predict that sodium insertion is more favourable at vacancies than at interstitial sites. Our calculations also show that the intercalation voltage is sensitive to the anion coordination environment of the vacancy. Sodiation to higher concentrations induces a phase transition toward a disordered rhombohedral structure, similar to that observed in defect-free TiO 2. Finally, we find that the X-ray diffraction pattern of the rhombohedral phase drastically changes depending on the composition and degree of disorder, providing further comprehension on the sodium storage mechanism of anatase.
Original language | English |
---|---|
Pages (from-to) | 1100-1106 |
Number of pages | 7 |
Journal | Inorganic Chemistry Frontiers |
Volume | 5 |
Issue number | 5 |
Early online date | 29 Mar 2018 |
DOIs | |
Publication status | Published - 1 May 2018 |
ASJC Scopus subject areas
- Inorganic Chemistry
Fingerprint
Dive into the research topics of 'The electrochemical storage mechanism in oxy-hydroxyfluorinated anatase for sodium-ion batteries'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Dr B Morgan URF - Modelling Collective Lithium-Ion Dynamics in Battery Materials
Morgan, B. (PI)
1/10/14 → 30/09/19
Project: Research council
Datasets
-
DFT dataset: X=(Li,Na,Ca,Mg,Al) Intercalation into (F/OH)-Substituted Anatase TiO2
Morgan, B. (Creator), University of Bath, 29 Mar 2018
DOI: 10.15125/BATH-00473
Dataset
Equipment
-
Balena High Performance Computing (HPC) System
Facility/equipment: Equipment
-
High Performance Computing (HPC) Facility
Chapman, S. (Manager)
University of BathFacility/equipment: Facility