The effect of age on technique variability and outcome variability during a leg press

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

The aim of this study was to determine the effect of aging on power generation and joint coordination during a leg press, in order to increase understanding of how functional movements are affected during the aging process. 44 older and 24 younger adults performed eight sub-maximal power repetitions on a seated leg press dynamometer. Peak power and velocity (at 40% maximum resistance) were measured along with the coordination (coupling angle) of the lower limb joints using the vector coding technique. The younger adults produced significantly greater peak power than the older adults (mean ± SD; 762 W ± 245 vs 361 W ± 162, p < 0.01) and at higher peak velocities (mean ± SD; 1.37 m/s ± 0.05 vs 1.00 m/s ± 0.06, p < 0.01). The older adults produced less consistent values of peak power than younger adults, evidenced by a higher coefficient of variation (mean ± SD; 7.6% ± 5.2 vs 5.0% ± 3.0, p < 0.01), however, there was significantly less variability in the coupling angles displayed by the older adults compared to the younger adults (mean ± SD; 2.0° ± 1.1 vs 3.5° ± 2.7, p < 0.01 (ankle-knee); 1.7° ± 0.6 vs 4.1° ± 3.0, p < 0.01 (knee-hip)). The results of this study demonstrate that older adults display higher outcome variability but lower variability in technique (coordination). The more rigid movement strategies displayed by the older adults potentially reflects an increased risk of overuse injury due to repetitive demands on the same structures, or the reduced ability to respond to unexpected situations due to a lack of flexibility in joint control.
Original languageEnglish
Article numbere0163764
JournalPLoS ONE
Volume11
Issue number10
DOIs
Publication statusPublished - 4 Oct 2016

Fingerprint

Young Adult
Leg
legs
young adults
Aging of materials
Dynamometers
Power generation
knees
Knee
Joints
Cumulative Trauma Disorders
dynamometers
Articular Range of Motion
power generation
methodology
Ankle
Hip
Lower Extremity
hips
limbs (animal)

Cite this

@article{d09962816bbe4661927eb42bf3105944,
title = "The effect of age on technique variability and outcome variability during a leg press",
abstract = "The aim of this study was to determine the effect of aging on power generation and joint coordination during a leg press, in order to increase understanding of how functional movements are affected during the aging process. 44 older and 24 younger adults performed eight sub-maximal power repetitions on a seated leg press dynamometer. Peak power and velocity (at 40{\%} maximum resistance) were measured along with the coordination (coupling angle) of the lower limb joints using the vector coding technique. The younger adults produced significantly greater peak power than the older adults (mean ± SD; 762 W ± 245 vs 361 W ± 162, p < 0.01) and at higher peak velocities (mean ± SD; 1.37 m/s ± 0.05 vs 1.00 m/s ± 0.06, p < 0.01). The older adults produced less consistent values of peak power than younger adults, evidenced by a higher coefficient of variation (mean ± SD; 7.6{\%} ± 5.2 vs 5.0{\%} ± 3.0, p < 0.01), however, there was significantly less variability in the coupling angles displayed by the older adults compared to the younger adults (mean ± SD; 2.0° ± 1.1 vs 3.5° ± 2.7, p < 0.01 (ankle-knee); 1.7° ± 0.6 vs 4.1° ± 3.0, p < 0.01 (knee-hip)). The results of this study demonstrate that older adults display higher outcome variability but lower variability in technique (coordination). The more rigid movement strategies displayed by the older adults potentially reflects an increased risk of overuse injury due to repetitive demands on the same structures, or the reduced ability to respond to unexpected situations due to a lack of flexibility in joint control.",
author = "Cassie Wilson and Perkin, {Oliver J.} and McGuigan, {Miranda P.} and Stokes, {Keith A.}",
year = "2016",
month = "10",
day = "4",
doi = "10.1371/journal.pone.0163764",
language = "English",
volume = "11",
journal = "PLoS ONE",
issn = "1932-6203",
publisher = "Public Library of Science (PLOS)",
number = "10",

}

TY - JOUR

T1 - The effect of age on technique variability and outcome variability during a leg press

AU - Wilson, Cassie

AU - Perkin, Oliver J.

AU - McGuigan, Miranda P.

AU - Stokes, Keith A.

PY - 2016/10/4

Y1 - 2016/10/4

N2 - The aim of this study was to determine the effect of aging on power generation and joint coordination during a leg press, in order to increase understanding of how functional movements are affected during the aging process. 44 older and 24 younger adults performed eight sub-maximal power repetitions on a seated leg press dynamometer. Peak power and velocity (at 40% maximum resistance) were measured along with the coordination (coupling angle) of the lower limb joints using the vector coding technique. The younger adults produced significantly greater peak power than the older adults (mean ± SD; 762 W ± 245 vs 361 W ± 162, p < 0.01) and at higher peak velocities (mean ± SD; 1.37 m/s ± 0.05 vs 1.00 m/s ± 0.06, p < 0.01). The older adults produced less consistent values of peak power than younger adults, evidenced by a higher coefficient of variation (mean ± SD; 7.6% ± 5.2 vs 5.0% ± 3.0, p < 0.01), however, there was significantly less variability in the coupling angles displayed by the older adults compared to the younger adults (mean ± SD; 2.0° ± 1.1 vs 3.5° ± 2.7, p < 0.01 (ankle-knee); 1.7° ± 0.6 vs 4.1° ± 3.0, p < 0.01 (knee-hip)). The results of this study demonstrate that older adults display higher outcome variability but lower variability in technique (coordination). The more rigid movement strategies displayed by the older adults potentially reflects an increased risk of overuse injury due to repetitive demands on the same structures, or the reduced ability to respond to unexpected situations due to a lack of flexibility in joint control.

AB - The aim of this study was to determine the effect of aging on power generation and joint coordination during a leg press, in order to increase understanding of how functional movements are affected during the aging process. 44 older and 24 younger adults performed eight sub-maximal power repetitions on a seated leg press dynamometer. Peak power and velocity (at 40% maximum resistance) were measured along with the coordination (coupling angle) of the lower limb joints using the vector coding technique. The younger adults produced significantly greater peak power than the older adults (mean ± SD; 762 W ± 245 vs 361 W ± 162, p < 0.01) and at higher peak velocities (mean ± SD; 1.37 m/s ± 0.05 vs 1.00 m/s ± 0.06, p < 0.01). The older adults produced less consistent values of peak power than younger adults, evidenced by a higher coefficient of variation (mean ± SD; 7.6% ± 5.2 vs 5.0% ± 3.0, p < 0.01), however, there was significantly less variability in the coupling angles displayed by the older adults compared to the younger adults (mean ± SD; 2.0° ± 1.1 vs 3.5° ± 2.7, p < 0.01 (ankle-knee); 1.7° ± 0.6 vs 4.1° ± 3.0, p < 0.01 (knee-hip)). The results of this study demonstrate that older adults display higher outcome variability but lower variability in technique (coordination). The more rigid movement strategies displayed by the older adults potentially reflects an increased risk of overuse injury due to repetitive demands on the same structures, or the reduced ability to respond to unexpected situations due to a lack of flexibility in joint control.

UR - http://dx.doi.org/10.1371/journal.pone.0163764

UR - http://dx.doi.org/10.1371/journal.pone.0163764

U2 - 10.1371/journal.pone.0163764

DO - 10.1371/journal.pone.0163764

M3 - Article

VL - 11

JO - PLoS ONE

JF - PLoS ONE

SN - 1932-6203

IS - 10

M1 - e0163764

ER -